Coefficient bounds for multivalent classes of starlike and convex functions defined by higher-order derivatives and complex order

  • M. K. Aouf Mansoura Univ., Egypt
  • A. O. Mostafa Mansoura Univ., Egypt
  • T. Bulboacă Babes ̧-Bolyai Univ., Cluj-Napoca, Romania
Keywords: CLASSES OF STARLIKE

Abstract

UDC 517.5

We determine coefficient bounds for functions from  subclasses of $p$-valent starlike and $p$-valent convex functions defined by higher-order derivatives and complex order introduced with the help of a certain nonhomogeneous Cauchy – Euler differential equation for higher-order derivatives.  Relevant connections of some of our results with the results obtained earlier  are provided.

References

O. Altintas, H. Irmak, S. Owa, H. M. Srivastava, Coefficient bounds for some families of starlike and convex functions of complex order, Appl. Math. Lett., 20, № 12, 1218 – 1222 (2007). DOI: https://doi.org/10.1016/j.aml.2007.01.003

M. K. Aouf, $p$-Valent classes related to convex functions of complex order, Rocky Mountain J. Math., 15, № 4, 853 – 863 (1985). DOI: https://doi.org/10.1216/RMJ-1985-15-4-853

M. K. Aouf, On a class of $p$-valent starlike functions of order $alpha$, Int. J. Math. and Math. Sci., 10, № 4, 733 – 744 (1987). DOI: https://doi.org/10.1155/S0161171287000838

M. K. Aouf, On coefficient bounds of a certain class of p-valent $lambda$-spiral functions of order $alpha$, Int. J. Math. and Math. Sci., 10, № 2, 259 – 266 (1987). DOI: https://doi.org/10.1155/S0161171287000322

M. K. Aouf, A generalization of multivalent functions with negative coefficients, J. Korean Math. Soc., 25, № 1, 53 – 66 (1988).

M. K. Aouf, H. M. Hossen, H. M. Srivastava, Some families of multivalent functions, Comput. Math. Appl., 39, № 7-8, 39 – 48 (2000). DOI: https://doi.org/10.1016/S0898-1221(00)00063-8

M. K. Aouf, Some families of $p$-valent functions with negative coefficients, Acta Math. Univ. Comenian. (N.S.), 78, № 1, 121 – 135 (2009).

M. K. Aouf, On certain multivalent functions with negative coefficients defined by using a differential operator, Mat. Vesnik, 62, № 1, 23 – 35 (2010).

M. K. Aouf, Bounded $p$-valent Robertson functions defined by using a differential operator, J. Franklin Inst., 347, № 10, 1927 – 1941 (2010). DOI: https://doi.org/10.1016/j.jfranklin.2010.10.012

M. K. Aouf, H. E. Darwish, A. E. Alhosseny, A generalization of $p$-valent classes related to convex functions, Demonstr. Math., 33, № 3, 467 – 479 (2000). DOI: https://doi.org/10.1515/dema-2000-0305

S. Bulut, The generalization of the generalized Al-Oboudi differential operator, Appl. Math. and Comput., 215, № 4, 1448 – 1455 (2009). DOI: https://doi.org/10.1016/j.amc.2009.06.021

Q. Deng, Certain subclass of analytic functions with complex order, Appl. Math. and Comput., 208, № 2, 359 – 362 (2009). DOI: https://doi.org/10.1016/j.amc.2008.12.018

L. Dileep, S. Latha, On $p$-valent functions of complex order, Demonstr. Math., 45, № 3, 541 – 547 (2012). DOI: https://doi.org/10.1515/dema-2013-0399

R. M. El-Ashwah, M. K. Aouf, S. M. El-Deeb, Inclusion and neighborhood properties of certain subclasses of $p$-valent functions of complex order defined by convolution, Ann. Univ. Mariae Curie-Skłodowska} Sect. A, 65, № 1, 33 – 48 (2011). DOI: https://doi.org/10.2478/v10062-011-0004-7

M. A. Nasr, M. K. Aouf, On convex functions of complex order, Bull. Fac. Sci. Mansoura Univ., 9, 565 – 582 (1982).

M. A. Nasr, M. K. Aouf, Bounded starlike functions of complex order, Proc. Indian Acad. Sci. Math. Sci., 92, № 2, 97 – 102 (1983). DOI: https://doi.org/10.1007/BF02863012

M. A. Nasr, M. K. Aouf, Starlike function of complex order, J. Natur. Sci. Math., 25, № 1, 1 – 12 (1985).

S. Owa, On certain classes of $p$-valent functions with negative coefficients, Bull. Belg. Math. Soc. Simon Stevin, 59, 385 – 402 (1985).

D. A. Patil, N. K. Thakare, On coefficient bounds of $p$-valent $lambda$-spiral functions of order $alpha$, Indian J. Pure and Appl. Math., 10, № 7, 842 – 853 (1979).

Ch. Pommerenke, On univalent functions, Bloch functions and VMOA, Math. Ann., 26, № 3, 199 – 208 (1978). DOI: https://doi.org/10.1007/BF01351365

M. S. Robertson, On the theory of univalent functions, Ann. Math., 37, 374 – 408 (1936). DOI: https://doi.org/10.2307/1968451

H. M. Srivastava, O. Altintas, S. K. Serenbay, Coefficient bounds for certain subclasses of starlike functions of complex order, Appl. Math. Lett., 24, № 8, 1359 – 1363 (2011). DOI: https://doi.org/10.1016/j.aml.2011.03.010

H. M. Srivastava, M. K. Aouf, S. Owa, Certain classes of multivalent functions of order $alpha$ and type $beta$, Bull. Soc. Math. Belg., Tijdschr. Belg. Wisk. Gen., 42, Ser B, № 1, 31 – 66 (1990).

H. M. Srivastava, S. Owa (editors), Univalent functions, fractional calculus, and their applications, Halsted Press (Ellis Harwood Limited, Chichester), John Wiley and Sons, New York (1989).

H. M. Srivastava, S. Owa (editors), Current topics in analytic function theory, World Sci. Publ. Co., Singapore etc. (1992). DOI: https://doi.org/10.1142/1628

H. M. Srivastava, S. Owa, S. K. Chatterjea, A note on certain classes of starlike functions, Rend. Semin. Mat. Univ. Padova, 77, 115 – 124 (1987).

Published
27.11.2022
How to Cite
AoufM. K., MostafaA. O., and BulboacăT. “Coefficient Bounds for Multivalent Classes of Starlike and Convex Functions Defined by Higher-Order Derivatives and Complex Order”. Ukrains’kyi Matematychnyi Zhurnal, Vol. 74, no. 10, Nov. 2022, pp. 1308 -16, doi:10.37863/umzh.v74i10.6258.
Section
Research articles