On the asymptotic of solutions of the second-order differential equations with rapidly varying nonlinearities
Abstract
UDC 517.925
We establish new results concerning the conditions of existence of one class of monotonous solutions of a two-term nonautonomous differential equation of the the second-order with a rapidly varying nonlinearity.
These results essentially supplement the results of previous researches.
References
V. Mari´c, Regular variation and differential equations, Lect. Notes Math., 1726 (2000), https://doi.org/10.1007/BFb0103952 DOI: https://doi.org/10.1007/BFb0103952
V. M. Evtukhov, A. G. Chernikova, Asimptoticheskoe povedenie reshenij oby`knovenny`kh differenczial`ny`kh uravnenij vtorogo poryadka s by`stro menyayushhimisya nelinejnostyami, Ukr. mat. zhurn., 69, № 10, 1315 – 1363 (2017).
N. H. Bingham, C. M. Goldie, J. L. Teugels, Regular variation. Encyclopedia of mathematics and its applications,Cambridge Univ. Press, Cambridge (1987). DOI: https://doi.org/10.1017/CBO9780511721434
V. M. Evtukhov, Asimptoticheskie predstavleniya reshenij neavtonomny`kh oby`knovenny`kh differenczial`ny`kh uravnenij, Dic. ... d-ra fiz.-mat. nauk, Kiev (1998).
E. Seneta, Regularly varying functions (Russian), Nauka, Moscow (1985).
V. M. Evtukhov, A. M. Samojlenko, Usloviya sushhestvovaniya ischezayushhikh v osoboj tochke reshenij veshhestvenny`kh neavtonomny`kh sistem kvazilinejny`kh differenczial`ny`kh uravnenij, Ukr. mat. zhurn., 62, № 1, 52 – 80 (2010).
I. T. Kiguradze, T. A. Chanturiya, Asimptoticheskie svojstva reshenij neavtonomny`kh oby`knovenny`kh diffeenczial`ny`kh uravnenij, Nauka, Moskva (1990).
This work is licensed under a Creative Commons Attribution 4.0 International License.