On On the approximation of functions by Jacobi – Dunkl expansion in the weighted space $\mathbb{L}_{2}^{(\alpha,\beta)}$
Abstract
UDC 517.5
We prove some new estimates useful in applications for the approximation of certain classes of functions characterized by the generalized continuity modulus from the space $\mathbb{L}_{2}^{(\alpha,\beta)}$ by partial sums of the Jacobi – Dunkl series. For this purpose, we use the generalized Jacobi – Dunkl translation operator obtained by Vinogradov in the monograph [Theory of approximation of functions of real variable, Fizmatgiz, Moscow (1960) (in Russian)].
References
V. A. Abilov, F. V. Abilova, M. K. Kerimov, Some issues concerning approximations of functions by Fourier – Bessel sums, Comput. Math. and Math. Phys., 53, № 7, 867 – 873 (2013).
V. A. Abilov, F. V. Abilova, M. K. Kerimov, Some remarks concerning the Fourier transform in the space $L_{2}big(mathbb{R}^{n}big)$, Zh. Vychisl. Mat. i Mat. Fiz., 48, 939 – 945 (2008) ({it English transl.}: Comput. Math. and Math. Phys., 48, 885 – 891 (2008)).
R. Askey, S. Wainger, A convolution structure for Jacobi series, Amer. J. Math., 91, 463 – 485 (1969).
H. Bavinck, Approximation processes for Fourier – Jacobi expansions, Appl. Anal., 5, 293 – 312 (1976).
F. Chouchene, Bounds, asymptotic behavior and recurrence relations for the Jacobi – Dunkl polynomials, Int. J. Open Probl. Complex Anal., 6, № 1, 49 – 77 (2014).
F. Chouchene, I. Haouala, Dirichlet theorem for Jacobi – Dunkl expansions; https://hal.archives-ouvertes.fr/hal-02126595.
F. Chouchene, Harmonic analysis associated with the Jacobi – Dunkl operator on $left]-dfrac{pi}{2},dfrac{pi}{2}right[$, J. Comput. and Appl. Math., 178, 75 – 89 (2005).
G. Gasper, Positivity and the convolution structure for Jacobi series, Ann. Math., 93, 112 – 118 (1971).
S. S. Platonov, Some problems in the theory of approximation of functions on compact homogeneous manifolds, Mat. Sb., 200, № 6, 67 – 108 (2009) ({it English transl.}: Sb. Math., 200, № 6, 845 – 885 (2009)).
A. Sveshnikov, A. N. Bogolyubov, V. V. Kravtsov, Lectures on mathematical physics, Nauka, Moscow (2004) (in Russian).
A. N. Tikhonov, A. A. Samarskii, Equations of mathematical physics, Gostekhteorizdat, Moscow (1953) (Pergamon Press, Oxford (1964)).
O. L. Vinogradov, On the norms of generalized translation operators generated by Jacobi – Dunkl operators, Zap. Nauchn. Sem. POMI, 389, 34 – 57 (2011).
Copyright (c) 2022 Othman Tyr
This work is licensed under a Creative Commons Attribution 4.0 International License.