Condition for intersection occupation measure to be absolutely continuous
DOI:
https://doi.org/10.37863/umzh.v72i9.6278Keywords:
Intersection local time, occupation measure, Plancherel-Parseval theoremAbstract
UDC 519.21
Given the i.i.d. Rd-valued stochastic processes X1(t),…,Xp(t), p≥2, with the stationary increments, a minimal condition is provided for the occupation measure
μt(B)=∫[0,t]p1B(X1(s1)−X2(s2),…,Xp−1(sp−1)−
−Xp(sp))ds1…dsp,B⊂Rd(p−1),
to be absolutely continuous with respect to the Lebesgue measure on Rd(p−1).
An isometry identity related to the resulting density (known as intersection local time) is also established.
References
X. Chen, Random Walk intersections: large deviations and related topics. Math. Surveys and Monogr., 157, Amer.Math. Soc., Providence (2009), https://doi.org/10.1090/surv/157 DOI: https://doi.org/10.1090/surv/157
X. Chen, W. V. Li, J. Rosinski, Q.-M. Shao, ´ Large deviations for local times and intersection local times of fractional Brownian motions and Riemann – Liouville processes, Ann. Probab., 39, 727 – 778 (2011), https://doi.org/10.1214/10-AOP566 DOI: https://doi.org/10.1214/10-AOP566
A. Dvoretzky, P. Erdös, S. Kakutani, ¨ Double points of paths of Brownian motions in n-space, Acta Sci. Math. (Szeged), 12, 75 – 81 (1950).
A. Dvoretzky, P. Erdös, S. Kakutani, ¨ Multiple points of paths of Brownian motions in the plane, Bull. Res. Counceil Israel, 3, 364 – 371 (1954).
E. B. Dynkin, Additive functionals of several time-reversable Markov processes, J. Funct. Anal., 42, No. 1, 64 – 101 (1981).
D. Geman, J. Horowitz, J. Rosen, A local time analysis of intersection of Brownian paths in the plane, Ann. Probab., 12, No. 1, 86 – 107 (1984).
J.-F. Le Gall, Propriétés d'intersection des marches aléatoires. I. Convergence vers le temps local d'intersection. (French) , Commun. Math. Phys., 104, 471 – 507 (1986), http://projecteuclid.org/euclid.cmp/1104115088
J.-F. Le Gall, Propriétés d'intersection des marches aléatoires. II. Étude des cas critiques. (French) , Commun. Math. Phys., 104, 509 – 528 (1986), http://projecteuclid.org/euclid.cmp/1104115089