Condition for intersection occupation measure to be absolutely continuous

Authors

  • X. Chen Univ. Tennessee, USA

DOI:

https://doi.org/10.37863/umzh.v72i9.6278

Keywords:

Intersection local time, occupation measure, Plancherel-Parseval theorem

Abstract

UDC 519.21

Given the i.i.d. Rd-valued stochastic processes X1(t),,Xp(t), p2, with the stationary increments, a minimal condition is provided for the occupation measure
μt(B)=[0,t]p1B(X1(s1)X2(s2),,Xp1(sp1)

Xp(sp))ds1dsp,BRd(p1),
to be absolutely continuous with respect to the Lebesgue measure on Rd(p1).
An isometry identity related to the resulting density (known as intersection local time) is also established.

References

X. Chen, Random Walk intersections: large deviations and related topics. Math. Surveys and Monogr., 157, Amer.Math. Soc., Providence (2009), https://doi.org/10.1090/surv/157 DOI: https://doi.org/10.1090/surv/157

X. Chen, W. V. Li, J. Rosinski, Q.-M. Shao, ´ Large deviations for local times and intersection local times of fractional Brownian motions and Riemann – Liouville processes, Ann. Probab., 39, 727 – 778 (2011), https://doi.org/10.1214/10-AOP566 DOI: https://doi.org/10.1214/10-AOP566

A. Dvoretzky, P. Erdös, S. Kakutani, ¨ Double points of paths of Brownian motions in n-space, Acta Sci. Math. (Szeged), 12, 75 – 81 (1950).

A. Dvoretzky, P. Erdös, S. Kakutani, ¨ Multiple points of paths of Brownian motions in the plane, Bull. Res. Counceil Israel, 3, 364 – 371 (1954).

E. B. Dynkin, Additive functionals of several time-reversable Markov processes, J. Funct. Anal., 42, No. 1, 64 – 101 (1981).

D. Geman, J. Horowitz, J. Rosen, A local time analysis of intersection of Brownian paths in the plane, Ann. Probab., 12, No. 1, 86 – 107 (1984).

J.-F. Le Gall, Propriétés d'intersection des marches aléatoires. I. Convergence vers le temps local d'intersection. (French) , Commun. Math. Phys., 104, 471 – 507 (1986), http://projecteuclid.org/euclid.cmp/1104115088

J.-F. Le Gall, Propriétés d'intersection des marches aléatoires. II. Étude des cas critiques. (French) , Commun. Math. Phys., 104, 509 – 528 (1986), http://projecteuclid.org/euclid.cmp/1104115089

Published

22.09.2020

Issue

Section

Research articles

How to Cite

Chen, X. “Condition for Intersection Occupation Measure to Be Absolutely Continuous ”. Ukrains’kyi Matematychnyi Zhurnal, vol. 72, no. 9, Sept. 2020, pp. 1304-12, https://doi.org/10.37863/umzh.v72i9.6278.