On correlation between sharp Kolmogorov type inequalities and sharp Kolmogorov–Remez type inequalities

  • V. A. Kofanov Oles Honchar Dnipro National University
Keywords: Sharp constant in Kolmogorov in

Abstract

UDC 517.5

We establish a new theorem on correlation between the sharp constants in the Kolmogorov type inequalities and the sharp constants in the Kolmogorov–Remez type inequalities for differentiable periodic functions.
As a consequence, we obtain new sharp Kolmogorov–Remez type inequalities for such functions.
We also derive new sharp Bernstein–Remez type inequalities for trigonometric polynomials and polynomial splines.

 

 

 

References

B. E. Klocz, Priblizhenie differencziruemy`kh funkczij funkcziyami bol`shej gladkosti, Mat. zametki, 21, № 1, 21 – 32 (1977).

N. P. Kornejchuk, V. F. Babenko, V. A. Kofanov, S. A. Pichugov, Neravenstva dlya proizvodny`kh i ikh prilozheniya, Nauk. dumka, Kiev (2003).

V. F. Babenko, V. A. Kofanov, S. A. Pichugov, Tochny`e neravenstva tipa Kolmogorova s ogranichennoj starshej proizvodnoj v sluchae maly`kh gladkostej, Ukr. mat. zhurn., 53, № 10, 1298 – 1308 (2001). DOI: https://doi.org/10.1023/A:1015226223806

V. F. Babenko, V. A. Kofanov, S. A. Pichugov, Sravnenie tochny`kh konstant v neravenstvakh dlya proizvodny`kh na dejstvitel`noj osi i na okruzhnosti, Ukr. mat. zhurn., 55, № 5, 579 – 589 (2003).

V. A. Kofanov, V. E. Miropolskiy, On the best constants in inequalities of Kolmogorov type, East J. Approx., 13, № 4, 455 – 466 (2007).

V. G. Solyar, Ob odnom neravenstve mezhdu normami funkczii i ee proizvodny`kh, Izv. vuzov. Matematika, 2, 165 – 168 (1976).

E. Remes, Sur une propriete еxtremale des polynomes de Tchebychef, Zap. Nauk.-doslid. in-tu matematiki j mekhaniki ta Kharkiv. mat. t-va, ser. 4, 13, vip. 1, 93 – 95 (1936).

M. I. Ganzburg, On a Remez-type inequality for trigonometric polynomials, J. Approx. Theory, 164, 1233 – 1237 (2012), https://doi.org/10.1016/j.jat.2012.05.006 DOI: https://doi.org/10.1016/j.jat.2012.05.006

E. Nursultanov, S. Tikhonov, A sharp Remez inequality for trigonometric polynomials, Consr. Approx., 38, 101 – 132 (2013), https://doi.org/10.1007/s00365-012-9172-0 DOI: https://doi.org/10.1007/s00365-012-9172-0

M. I. Ganzburg, Polynomial inequalities on measurable sets and their applications, Consr. Approx., 17, 275 – 306 (2001), https://doi.org/10.1007/s003650010020 DOI: https://doi.org/10.1007/s003650010020

S. Tikhonov, P. Yuditski, Sharp Remez inequality, https://www.researchgate.net/publication/327905401.

V. A. Kofanov, Tochny`e neravenstva tipa Remeza dlya differencziruemy`kh periodicheskikh funkczij, polinomov i splajnov, Ukr. mat. zhurn., 68, № 2, 227 – 240 (2016).

B. Bojanov, N. Naidenov, An extension of the Landau – Kolmogorov inequality. Solution of a problem of Erdos, J. Anal. Math., 78, 263 – 280 (1999), https://doi.org/10.1007/BF02791137 DOI: https://doi.org/10.1007/BF02791137

V. A. Kofanov, Tochny`e verkhnie grani norm funkczij i ikh proizvodny`kh na klassakh funkczij s zadannoj funkcziej sravneniya, Ukr. mat. zhurn., 63, № 7, 969 – 984 (2011).

V. A. Kofanov, Neravenstva razny`kh metrik dlya differencziruemy`kh periodicheskikh funkczij, Ukr. mat. zhurn., 67, № 2, 202 – 212 (2015).

V. A. Kofanov, Tochny`e neravenstva razny`kh metrik tipa Remeza dlya differencziruemy`kh periodicheskikh funkczij, polinomov i splajnov, Ukr. mat. zhurn., 69, № 2, 173 – 188 (2017).

A. E. Gajdabura, V. A. Kofanov, Tochny`e neravenstva razny`kh metrik tipa Remeza na klassakh funkczij s zadannoj funkcziej sravneniya, Ukr. mat. zhurn., 69, № 11, 1472 – 1485 (2017).

V. A. Kofanov, I. V. Popovich, Tochny`e neravenstva razny`kh metrik tipa Remeza s nesimmetrichny`mi ogranicheniyami na funkczii, Ukr. mat. zhurn., 72, № 7, 918 – 927 (2020). DOI: https://doi.org/10.37863/umzh.v72i7.2352

V. A. Kofanov, Tochny`e neravenstva tipa Kolmogorova – Remeza dlya periodicheskikh funkczij maloj gladkosti, Ukr. mat. zhurn., 72, № 2, 483 – 493 (2020). DOI: https://doi.org/10.37863/umzh.v72i4.963

A. Pinkus, O. Shisha, Variations on the Chebyshev and $L_{q}$theories of best approximation, J. Approx. Theory, 35, № 2, 148 – 168 (1982), https://doi.org/10.1016/0021-9045(82)90033-8 DOI: https://doi.org/10.1016/0021-9045(82)90033-8

A. Zigmund, Trigonometricheskie ryady`, t. 2, Mir, Moskva (1965).

V. V. Arestov, Ob integral`ny`kh neravenstvakh dlya polinomov i splajnov, Izv. AN SSSR. Ser. mat., 45, 3 – 32 (1982).

V. A. Kofanov, O tochny`kh neravenstvakh tipa Bernshtejna dlya splajnov, Ukr. mat. zhurn., 58, № 10, 1357 – 1367 (2006).

Published
21.04.2021
How to Cite
Kofanov, V. A. “On Correlation Between Sharp Kolmogorov Type Inequalities and Sharp Kolmogorov–Remez Type Inequalities”. Ukrains’kyi Matematychnyi Zhurnal, Vol. 73, no. 4, Apr. 2021, pp. 506 -14, doi:10.37863/umzh.v73i4.6310.
Section
Research articles