Pseudo almost periodic solutions in the alpha-norm and Stepanov's sense for some evolution equations
Abstract
UDC 517.9
Our aim is to present the concept of double-measure ergodic and double-measure pseudo almost periodic functions in Stepanov's sense. In addition, we present numerous interesting results, such as the composition theorems and completeness properties for these two spaces of the considered functions. We also establish the existence and uniqueness for the double-measure pseudo almost periodic mild solutions in Stepanov's sense for some evolution equations.
References
E. Alvarez, C. Lizama, Weighted pseudo almost periodic solutions to a class of semilinear integro-differential equations in Banach spaces, Adv. Difference Equat., 1 – 18 (2015). DOI: https://doi.org/10.1186/s13662-015-0370-5
J. Blot, P. Cieutat, K. Ezzinbi, New approach for weighted pseudo-almost periodic functions under the light of measure theory, basic results and applications, Appl. Anal., 1 – 34 (2011).
H. Bohr, Zur Theorie der fastperiodischen Funktionen I, Acta Math., 45, 29 – 127 (1925). DOI: https://doi.org/10.1007/BF02395468
T. Chtioui, K. Ezzinbi and A. Rebey, Existence and regularity in the $alpha$-norm for neutral partial differential equations with finite delay, CUBO, 15, № 1, 49 – 75 (2013). DOI: https://doi.org/10.4067/S0719-06462013000100004
T. Diagana, Stepanov-like pseudo-almost periodicity and its applications to some nonau-tonomous differential equations, Nonlinear Anal.: Theory, Methods and Appl., 69, № 12, 4277 – 4285 (2008). DOI: https://doi.org/10.1016/j.na.2007.10.051
T. Diagana, K. Ezzinbi, M. Miraoui, Pseudo-almost periodic and pseudo-almost automorphic solutions to some evolution equations involving theoretical measure theory, Cubo, 16, № 2, 1 – 31 (2014). DOI: https://doi.org/10.4067/S0719-06462014000200001
T. Diagana, Gis`{e}le M Mophou, Gaston N'Gu'{e}r'{e}kata, Existence of weighted pseudo-almost periodic solutions to some classes of differential equations with $S^p$-weighted pseudo-almost periodic coefficients, Nonlinear Anal., 72, № 1, 430 – 438 (2006). DOI: https://doi.org/10.1016/j.na.2009.06.077
Baroun Mahmoud, Khalil Ezzinbi, Khalil Kamal, Maniar Lahcen, Pseudo almost periodic solutions for some parabolic evolution equations with Stepanov-like pseudo almost periodic forcing terms, J. Math. Anal. and Appl., 462, № 1, 233 – 262 (2018). DOI: https://doi.org/10.1016/j.jmaa.2018.01.037
A. Pazy, Semigroups of linear operators and application to partial differental equation, Appl. Math. Sci., 44, (1983). DOI: https://doi.org/10.1007/978-1-4612-5561-1
C.Y. Zhang, Pseudo almost periodic solutions of some differential equations, J. Math. Anal. and Appl., 151, 62 – 76 (1994). DOI: https://doi.org/10.1006/jmaa.1994.1005
C. Zhang, Pseudo almost periodic type functions and ergodicity, Sci. Press, Kluwer Acad. Publ., Dordrecht (2003). DOI: https://doi.org/10.1007/978-94-007-1073-3
Copyright (c) 2022 Mohsen Miraoui, Hedi Ben-Elmonser, Mosbah Eljeri, Amor Rebey
This work is licensed under a Creative Commons Attribution 4.0 International License.