Hom–Jordan–Malcev–Poisson algebras

Authors

  • T. Chtioui Univ. Sfax, Tunisia
  • S. Mabrouk Univ. Gafsa, Tunisia
  • A. Makhlouf Univ. de Haute Alsace, IRIMAS, Mulhouse, France

DOI:

https://doi.org/10.37863/umzh.v74i11.6360

Keywords:

Hom-JMP-algebra, Hom-Malcev algebra, Hom-Jordan algebra, Hom-flexible algebras, admissible Hom-JMP algebra, Pseudo-Euclidian Hom-JMP algebra, Hom-Lie-Jordan-Poisson triple system.

Abstract

UDC 512.5

We provide and study a Hom-type generalization of Jordan–Malcev–Poisson algebras called  Hom–Jordan–Malcev–Poisson algebras.   We show that they are closed under twisting by suitable self-maps and   give a characterization of admissible Hom–Jordan–Malcev–Poisson algebras.  In addition, we introduce the notion of pseudo-Euclidian Hom–Jordan–Malcev–Poisson algebras and describe its T-extension.  Finally, we generalize the notion of Lie–Jordan–Poisson triple system to the Hom setting and establish its relationships with Hom–Jordan–Malcev–Poisson algebras.

References

A. A. Albert, On the power-associativity of rings, Summa Brazil. Math., 2, 21–32 (1948).

S. Attan, A. N. Issa, Hom–Lie triple system and Hom-Bol algebra structures on Hom-Maltsev and right Hom-alternative algebras, Int. J. Math. and Math. Sci., 2018, (2018). DOI: https://doi.org/10.1155/2018/4528685

M. Ait Ben Haddou, S. Benayadi, S. Boulmane, Malcev–Poisson-Jordan algebras, J. Algebra and Appl., 15, No. 9, Article 1650159 (2016). DOI: https://doi.org/10.1142/S0219498816501590

J. T. Hartwig, D. Larsson, S. D. Silvestrov, Deformations of Lie algebras using sigma-derivations, J. Algebra, 295, 314–361 (2006). DOI: https://doi.org/10.1016/j.jalgebra.2005.07.036

F. Kubo, Finite-dimensional non-commutative Poisson algebras, J. Pure and Appl. Algebra, 113, 307–314 (1996). DOI: https://doi.org/10.1016/0022-4049(95)00151-4

A. Makhlouf, Hom-alternative algebras and Hom–Jordan algebras, Int. Electron. J. Algebra, 8, 177–190 (2010).

A. Makhlouf, S. Silvestrov, Hom-algebra structures, J. Gen. Lie Theory and Appl., 2, 51–64 (2008). DOI: https://doi.org/10.4303/jglta/S070206

A. Makhlouf, S. Silvestrov, Hom-algebras and Hom-coalgebras, J. Algebra and Appl., 9, 1–37 (2010). DOI: https://doi.org/10.1142/S0219498810004117

I. P. Shestakov, Speciality problem for Malcev algebras and Poisson–Malcev algebras, Nonassociative Algebra and its Applications, Lecture Notes in Pure and Appl. Math., vol. 211, Dekker, New York (2000), p. 365–371. DOI: https://doi.org/10.1201/9780429187674-34

D. Yau, Power Hom-associative algebras}; arXiv:1007.4118.

D. Yau, Hom–Malcev, Hom-alternative and Hom–Jordan algebras, Int. J. Algebra, 11, 177–217 (2012).

Downloads

Published

26.12.2022

Issue

Section

Research articles

How to Cite

Chtioui, T., et al. “Hom–Jordan–Malcev–Poisson Algebras”. Ukrains’kyi Matematychnyi Zhurnal, vol. 74, no. 11, Dec. 2022, pp. 1571-82, https://doi.org/10.37863/umzh.v74i11.6360.