Bernstein inequality for multivariate functions with smooth Fourier images

  • Ha Huy Bang Inst. Math., Vietnam Acad. Sci. and Technology, Hanoi, Vietnam
  • Vu Nhat Huy Hanoi Univ. Sci., Vietnam Nat. Univ., and TIMAS, Thang Long Univ., Hanoi, Vietnam
Keywords: $L^p$- spaces, Bernstein inequality, generalized functions

Abstract

UDC 517.5

Let $K$ be a compact set in ${\Bbb R}^n$ with $(O)$-property and let $1\leq p\leq \infty$. Then there exists a constant $C_K< \infty $ independent of $f$ and $\alpha$ such that $$\|D^{\alpha } f \|_p \leq C_K \sup\limits_{\xi \in K } |\xi ^{\alpha} |\, \|f\|_{\mathcal{H}_{p,K,3}}$$ for all $\alpha \in \mathbb{Z}_+^n$ and $f\in \mathcal{H}_{p,K,3},$ where $\mathcal{H}_{p,K,3}=\big\{f \in L^p({\Bbb R}^n)\colon {\rm supp\,} \widehat f \subset K ,D^{(3,3,\ldots,3)} \widehat{f} \in C({\Bbb R}^n) \big\},$ $\|f\|_{\mathcal{H}_{p,K,3}} = \big\|D^{(3,3,\ldots,3)} \widehat{f}\,\big\|_\infty$, and $\widehat{f}$ is the Fourier transform of $f$. Note that $K$ is said to have the $(O)$-property if there exists a constant $C>0$ such that $$\sup\limits_{{\bf x} \in K} |{\bf x}^{\alpha + e_j} | \geq C\sup\limits_{{\bf x} \in K } |{\bf x}^{\alpha} |$$ for all $\alpha \in \mathbb{Z}_+^n$ and $j=1,2, \ldots ,n$.

References

H. H. Bang, M. Morimoto, On the Bernstein–Nikolsky inequality, Tokyo J. Math., 14, 231–238 (1991). DOI: https://doi.org/10.3836/tjm/1270130503

H. H Bang, A property of infinitely differentiable functions, Proc. Amer. Math. Soc., 108, 73–76 (1990). DOI: https://doi.org/10.1090/S0002-9939-1990-1024259-9

H. H. Bang, Functions with bounded spectrum, Trans. Amer. Math. Soc., 347, 1067–1080 (1995). DOI: https://doi.org/10.1090/S0002-9947-1995-1283539-1

H. H. Bang, The study of the properties of functions belonging to an Orlicz space depending on the geometry of their spectra, Izv. Akad. Nauk Ser. Mat., 61, 163–198 (1997). DOI: https://doi.org/10.1070/IM1997v061n02ABEH000120

H. H. Bang, V. N. Huy, Behavior of the sequence of norms of primitives of a function, J. Approx. Theory, 162, 1178–1186 (2010). DOI: https://doi.org/10.1016/j.jat.2009.12.011

S. N. Bernstein, Collected works, vol. II, Izdat. Akad. Nauk SSSR, Moscow (1954).

K. Dzhaparidze, J. H. Zanten, On Bernstein-type inequalities for martingales, Stochastic Process. and Appl., 93, 109–117 (2001). DOI: https://doi.org/10.1016/S0304-4149(00)00086-7

C. Frappier, Q. I. Rahman, On an inequality of S. Bernstein, Canad. J. Math., 34, 932–944 (1982). DOI: https://doi.org/10.4153/CJM-1982-066-7

A. Mate, P. Nevai, Bernstein's inequality in $L^p$ for $0 < p < 1$ and $(C, 1)$ bounds for orthogonal polynomials, Ann. Math., 2, 145–154 (1980). DOI: https://doi.org/10.2307/1971219

S. M. Nikolskii, Approximation of functions of several variables and imbedding theorems, Nauka, Moscow (1977).

I. Pesenson, Bernstein–Nikolskii inequalities and Riesz interpolation formula on compact homogeneous manifolds, J. Approx. Theory, 150, No. 2, 175–198 (2008). DOI: https://doi.org/10.1016/j.jat.2007.06.001

I. Pesenson, Bernstein–Nikolskii and Plancherel–Polya inequalities in $L_p$-norms on noncompact symmetric spaces, Math. Nachr., 282, No. 2, 253–269 (2009). DOI: https://doi.org/10.1002/mana.200510736

Q. I. Rahman, Q. M. Tariq, On Bernstein's inequality for entire functions of exponential type, J. Math. Anal. and Appl., 359, 168–180 (2009). DOI: https://doi.org/10.1016/j.jmaa.2009.05.035

Q. I. Rahman, G. Schmeisser, $L^p$ inequalities for entire functions of exponential type, Trans. Amer. Math. Soc., 320, 91–103 (1990). DOI: https://doi.org/10.1090/S0002-9947-1990-0974526-4

Q. I. Rahman, Q. M. Tariq, On Bernstein's inequality for entire functions of exponential type, Comput. Methods Funct. Theory, 7, 167–184 (2007). DOI: https://doi.org/10.1007/BF03321639

V. S. Vladimirov, Methods of the theory of generalized functions, Taylor & Francis, London, New York (2002). DOI: https://doi.org/10.1201/9781482288162

V. V. Yurinskii, Exponential inequalities for sums of random vectors, J. Multivariate Anal., 6, 473–499 (1976). DOI: https://doi.org/10.1016/0047-259X(76)90001-4

Published
26.12.2022
How to Cite
Bang, H. H., and V. N. Huy. “Bernstein Inequality for Multivariate Functions With Smooth Fourier Images”. Ukrains’kyi Matematychnyi Zhurnal, Vol. 74, no. 11, Dec. 2022, pp. 1558 -70, doi:10.37863/umzh.v74i11.6386.
Section
Research articles