Widths of functional classes defined by majorants of generalized moduli of smoothness in the spaces Sp
DOI:
https://doi.org/10.37863/umzh.v73i6.6432Keywords:
Kolmogorov width, Bernstein width, best approximation, generelized module of smoothness, Jackson-type inequalityAbstract
UDC 517.5
We obtain exact Jackson-type inequalities in terms of best approximations and averaged values of generalized moduli of smoothness in spaces Sp. For classes of periodic functions defined by certain conditions on the averaged values of the generalized moduli of smoothness, the Kolmogorov, Bernstein, linear, and projective widths in the spaces Sp are found.
References
F. Abdullayev, S. Chaichenko, A. Shidlich, Direct and inverse approximation theorems of functions in the Musielak-Orlicz type spaces, Math. Inequal. Appl. 24 (2021), no. 2, 323--336, https://doi.org/10.7153/mia-2021-24-23 DOI: https://doi.org/10.7153/mia-2021-24-23
F. G. Abdullayev, P. O¨ zkartepe, V. V. Savchuk , A. L. Shidlich, Exact constants in direct and inverse approximation theorems for functions of several variables in the spaces mathcalSp , Filomat, 33 , № 5, 1471 – 1484 (2019), https://doi.org/10.2298/fil1905471a DOI: https://doi.org/10.2298/FIL1905471A
N. Ajnulloev, Znachenie poperechnikov nekotory`kh klassov differencziruemy`kh funkczij v L2, Dokl. AN TadzhSSR, 29 , № 8, 415 – 418 (1984).
V. F. Babenko, S. V. Konareva, Neravenstva tipa Dzheksona –Stechkina dlya approksimaczii e`lementov gil`bertova prostranstva, Ukr. mat. zhurn., 70 , № 9, 1155 – 1165 (2018).
J. Boman, H. S. Shapiro, Comparison theorems for a generalized modulus of continuity, Ark. Mat., 9 , 91 – 116 (1971), https://doi.org/10.1007/BF02383639 DOI: https://doi.org/10.1007/BF02383639
J. Boman, Equivalence of generalized moduli of continuity, Ark. Mat., 18 , 73 – 100 (1980)Б https://doi.org/10.1007/BF02384682 DOI: https://doi.org/10.1007/BF02384682
S. B. Vakarchuk, Neravenstva tipa Dzheksona i tochny`e znacheniya poperechnikov klassov funkczij v prostranstvakh mathcalSp,1leqp<infty , Ukr. mat. zhurn., 56 , № 5. 595 – 605 (2004).
S. B. Vakarchuk, A. N. Shhitov, O nekotory`kh e`kstremal`ny`kh zadachakh teorii approksimaczii funkczij v prostranstvakh mathcalSp,1leqp<infty , Ukr. mat. zhurn., 57 , № 11, 1458 – 1466 (2005).
S. B. Vakarchuk, Neravenstva tipa Dzheksona s obobshhenny`m modulem neprery`vnosti i tochny`e znacheniya n-poperechnikov klassov (psi,beta)-differencziruemy`kh funkczij v L2. I , Ukr. mat. zhurn., 68 , № 6, 723 – 745 (2016).
S. N. Vasil`ev, Neravenstvo Dzheksona –Stechkina v L2[pi,pi], Tr. In-ta matematiki i mekhaniki UrO RAN, 7 , № 1, 75 – 84 (2001).
V. R. Vojczekhivs`kij, Nerivnosti tipu Dzheksona pri nablizhenni funkczij z prostoru mathcalSp sumami Zigmunda, Praczi In-tu matematiki NAN Ukrayini, 35 , 33 – 46 (2002).
M. G. Esmaganbetov, Poperechniki klassov iz L2[0,2pi] i minimizacziya tochny`kh konstant v neravenstvakh tipa Dzheksona, Mat. zametki, 66 , № 6, 816 – 820 (1999). DOI: https://doi.org/10.4213/mzm1117
A. I. Kozko, A. V. Rozhdestvenskij, O neravenstve Dzheksona v L2 s obobshhenny`m modulem neprery`vnosti, Mat. sb., 195 , № 8, 3 – 46 (2004). DOI: https://doi.org/10.4213/sm838
A. Pinkus, n-Widths in approximation theory, Springer-Verlag (1985)Б 291 pp. ISBN: 3-540-13638-X, https://doi.org/10.1007/978-3-642-69894-1 DOI: https://doi.org/10.1007/978-3-642-69894-1
V. V. Savchuk, A. L. Shidlich, Approximation of functions of several variables by linear methods in the space mathcalSp , Acta Sci. Math. (Szeged), 80 , № 3-4, 477 – 489 (2014)Б https://doi.org/10.14232/actasm-012-837-8 DOI: https://doi.org/10.14232/actasm-012-837-8
A. S. Serdyuk, Poperechniki v prostori mathcalSp klasiv funkczij, shho oznachayut`sya modulyami neperervnosti yikhnikh psi -pokhidnikh, Praczi In-tu matematiki NAN Ukrayini, 46 , 229 – 248 (2003).
A. I. Stepanecz, Approksimaczionny`e kharakteristiki prostranstv mathcalSpvarphi , Ukr. mat. zhurn., 53 , № 3, 392 – 416 (2001).
A. I. Stepanets, Methods of approximation theory, VSP, Leiden, Boston (2005)Б https://doi.org/10.1515/9783110195286 DOI: https://doi.org/10.1515/9783110195286
A. I. Stepanecz, Zadachi teorii priblizhenij v linejny`kh prostranstvakh, Ukr. mat. zhurn, 58 , № 1, 47 – 92 (2006).
A. I. Stepanecz, A. S. Serdyuk, Pryamy`e i obratny`e teoremy` priblizheniya funkczij v prostranstve mathcalSp , Ukr. mat. zhurn., 54 , №1, 106 – 124 (2002).
M. D. Sterlin, Tochny`e postoyanny`e v obratny`kh teoremakh teorii priblizhenij, Dokl. AN SSSR, 202 , № 3, 545 – 547 (1972).
L. V. Tajkov, Neravenstva, soderzhashhie nailuchshie priblizheniya i modul` neprery`vnosti funkczij iz L2, Mat. zametki, 20 , № 3, 433 – 438 (1976).
L. V. Tajkov, Strukturny`e i konstruktivny`e kharakteristiki funkczij iz L2 , Mat. zametki, 25 , № 2, 217 – 223 (1979).
V. M. Tikhomirov, Nekotory`e voprosy` teorii priblizhenij, Izd-vo Mosk. gos. un-ta, Moskva (1976).
M. F. Timan, Approksimacziya i svojstva periodicheskikh funkczij, Nauk. dumka, Kiev (2009).
N. I. Cherny`kh, O nailuchshem priblizhenii periodicheskikh funkczij trigonometricheskimi polinomami v L2, Mat. zametki, 2 , № 2, 513 – 522 (1967).
V. V. Shalaev, O poperechnikakh v L2 klassov differencziruemy`kh funkczij, opredelyaemy`kh modulyami neprery`vnosti vy`sshikh poryadkov, Ukr. mat. zhurn., 43 , № 1, 125 – 129 (1991).
H. S. Shapiro, A Tauberian theorem related to approximation theory, Acta Math., 120 , 279 – 292 (1968), https://doi.org/10.1007/BF02394612 DOI: https://doi.org/10.1007/BF02394612
Kh. Yussef, O nailuchshikh priblizheniyakh funkczij i znacheniyakh poperechnikov klassov funkczij v L2 , Primenenie funkczional`nogo analiza v teorii priblizhenij: Sb. nauch.tr. Tver. gos. un-ta, 100 – 114 (1988).
Kh. Yussef, Poperechniki klassov funkczij v prostranstveL2(0,2pi), Primenenie funkczional`nogo analiza v teorii priblizhenij: Sb. nauch. tr. Kalinin. gos. un-ta, 167 – 175 (1990).