Geodesic completeness of the left-invariant metrics on ${{\mathbb{R}} H^n} $
Abstract
UDC 514
We give the full classification of left-invariant metrics of an arbitrary signature on the Lie group corresponding to the real hyperbolic space. We show that all metrics have constant sectional curvature and that they are geodesically complete only in the Riemannian case.
References
Arnol’d, V. I. Mathematical methods of classical mechanics, Springer Sci. & Business Media (2013). https://books.google.com.ua/books?id=5OQlBQAAQBAJ
Bokan, N.; Šukilović, T.; Vukmirović, S. Lorentz geometry of 4-dimensional nilpotent Lie groups. Geom. Dedicata 177 (2015), 83–102. https://doi.org/10.1007/s10711-014-9980-4 DOI: https://doi.org/10.1007/s10711-014-9980-4
Calvaruso, Giovanni; Zaeim, Amirhesam. Four-dimensional Lorentzian Lie groups. Differential Geom. Appl. 31 (2013), no. 4, 496–509. https://doi.org/10.1016/j.difgeo.2013.04.006 DOI: https://doi.org/10.1016/j.difgeo.2013.04.006
Guediri, M. Sur la complétude des pseudo-métriques invariantes a gauche sur les groupes de Lie nilpotents. (French) [Completeness of left-invariant pseudometrics on nilpotent Lie groups] Rend. Sem. Mat. Univ. Politec. Torino 52 (1994), no. 4, 371–376. https://doi.org/10.1007/bfb0062502 DOI: https://doi.org/10.1007/BFb0062502
Jensen, Gary R. Homogeneous Einstein spaces of dimension four. J. Differential Geometry 3 (1969), 309–349. https://doi.org/10.4310/jdg/1214429056 DOI: https://doi.org/10.4310/jdg/1214429056
Kubo, Akira; Onda, Kensuke; Taketomi, Yuichiro; Tamaru, Hiroshi. On the moduli spaces of left-invariant pseudo-Riemannian metrics on Lie groups. Hiroshima Math. J. 46 (2016), no. 3, 357–374. https://doi.org/10.32917/hmj/1487991627 DOI: https://doi.org/10.32917/hmj/1487991627
Lauret, Jorge. Homogeneous nilmanifolds of dimensions $3$ and $4$. Geom. Dedicata 68 (1997), no. 2, 145–155. https://doi.org/10.1023/A:1004936725971 DOI: https://doi.org/10.1023/A:1004936725971
Milnor, John. Curvatures of left invariant metrics on Lie groups. Advances in Math. 21 (1976), no. 3, 293–329. https://doi.org/10.1016/s0001-8708(76)80002-3 DOI: https://doi.org/10.1016/S0001-8708(76)80002-3
Nomizu, Katsumi. Left-invariant Lorentz metrics on Lie groups. Osaka Math. J. 16 (1979), no. 1, 143–150. https://projecteuclid.org/euclid.ojm/1200771834
Nomizu, Katsumi. The Lorentz–Poincaré metric on the upper half-space and its extension. Hokkaido Math. J. 11 (1982), no. 3, 253–261. https://doi.org/10.14492/hokmj/1381757803 DOI: https://doi.org/10.14492/hokmj/1381757803
Vukmirović, Srdjan. Classification of left-invariant metrics on the Heisenberg group. J. Geom. Phys. 94 (2015), 72–80. https://doi.org/10.1016/j.geomphys.2015.01.005 DOI: https://doi.org/10.1016/j.geomphys.2015.01.005
Wolf, Joseph. Homogeneous manifolds of constant curvature. Comment. Math. Helv. 36 (1961), 112–147. DOI: https://doi.org/10.1007/BF02566896
Wolf, Joseph A. Isotropic manifolds of indefinite metric. Comment. Math. Helv. 39 (1964), 21–64. https://doi.org/10.1007/BF02566943 DOI: https://doi.org/10.1007/BF02566943
This work is licensed under a Creative Commons Attribution 4.0 International License.