Combining interpolation schemes and Lagrange interpolation on the unit sphere in RN+1

Authors

  • V. M. Phung Hanoi Nat. Univ. Education, Vietnam
  • V. T. Nguyen Hanoi Nat. Univ. Education, Vietnam
  • H. L. Dinh Hanoi Dept. Education and Training, Vietnam

DOI:

https://doi.org/10.37863/umzh.v74i4.6512

Keywords:

Lagrange interpolation, Limits of Lagrange interpolation, Interpolation on the unit sphere

Abstract

UDC 517.5

We study Lagrange interpolation in RN and on the unit sphere in RN+1. We show that sequences of unisolvent sets can be combined to get other sequences of unisolvent sets such that the existence of the limits is preserved. Moreover, the limiting operators keep the interpolation conditions under the combining process.

References

T. Bloom, J-.P. Calvi, A continiuty property of mulivariate Lagrange interpolation, Math. Comp., 66, № 220, 1561 – 1577 (1997)б https://doi.org/10.1090/S0025-5718-97-00858-2 DOI: https://doi.org/10.1090/S0025-5718-97-00858-2

B. Bojanov, H. Hakopian, A. Sahakian, Spline functions and multivariate interpolations, Springer-Verlag, Amsterdam (1993), https://doi.org/10.1007/978-94-015-8169-1 DOI: https://doi.org/10.1007/978-94-015-8169-1

L. Bos, On certain configurations of points in Rn which are unisolvent for polynomial interpolation, J. Approx. Theory, 64, 271 – 280 (1991)б https://doi.org/10.1016/0021-9045(91)90063-G DOI: https://doi.org/10.1016/0021-9045(91)90063-G

L. Bos, J.-P.Calvi, Multipoint Taylor interpolation, Calcolo, 45, № 1, 35 – 51 (2008). DOI: https://doi.org/10.1007/s10092-008-0142-7

L. Bos, J.-P.Calvi, Taylorian points of an algebraic curve and bivariate Hermite interpolation, Ann. Scuola Norm. Super. Pisa Cl. Sci, 7, 545 – 577 (2008), https://doi.org/10.1007/s10092-008-0142-7 DOI: https://doi.org/10.2422/2036-2145.2008.3.06

J.-P. Calvi, V. M. Phung , On the continuity of multivariate Lagrange interpolation at natural lattices, L.M.S. J. Comp. Math., 16, 45 – 60 (2013), https://doi.org/10.1112/S1461157013000016 DOI: https://doi.org/10.1112/S1461157013000016

J.-P. Calvi, V. M. Phung, Can we define Taylor polynomials on algebraic curves?, Ann. Polon. Math., 118, № 1, 1 – 24 (2016), https://doi.org/10.4064/ap3996-9-2016

K. C. Chung, T. H. Yao, On lattices admitting unique Lagrange interpolation, SIAM J. Numer. Anal., 14, № 4, 735 – 743 (1977), https://doi.org/10.1137/0714050 DOI: https://doi.org/10.1137/0714050

V. M. Phung, On bivariate Hermite interpolation and the limit of certain bivariate Lagrange projectors, Ann. Polon. Math., 115, № 1, 1 – 21 (2015), https://doi.org/10.4064/ap115-1-1 DOI: https://doi.org/10.4064/ap115-1-1

V. M. Phung, Polynomial interpolation in R2 and on the unit sphere in R3, Acta Math. Hung., 153, № 2, 289 – 317 (2017), https://doi.org/10.1007/s10474-017-0760-0 DOI: https://doi.org/10.1007/s10474-017-0760-0

V. M. Phung, Hermite interpolation on the unit sphere and the limits of Lagrange projectors, IMA J. Numer. Anal., 41, № 2, 1441 – 1464 (2021), https://doi.org/10.1093/imanum/draa026 DOI: https://doi.org/10.1093/imanum/draa026

Y. Xu, Polynomial interpolation on the unit sphere and on the unit ball, Adv. Comput. Math., 20, № 1-3, 247 – 260 (2004), https://doi.org/10.1023/A:1025851005416 DOI: https://doi.org/10.1023/A:1025851005416

Downloads

Published

23.05.2022

Issue

Section

Research articles

How to Cite

Phung, V. M., et al. “Combining Interpolation Schemes and Lagrange Interpolation on the Unit Sphere in RN+1”. Ukrains’kyi Matematychnyi Zhurnal, vol. 74, no. 4, May 2022, pp. 542-59, https://doi.org/10.37863/umzh.v74i4.6512.