Combining interpolation schemes and Lagrange interpolation on the unit sphere in $\mathbb R^{N+1}$
Abstract
UDC 517.5
We study Lagrange interpolation in $\mathbb R^N$ and on the unit sphere in $\mathbb R^{N+1}$. We show that sequences of unisolvent sets can be combined to get other sequences of unisolvent sets such that the existence of the limits is preserved. Moreover, the limiting operators keep the interpolation conditions under the combining process.
References
T. Bloom, J-.P. Calvi, A continiuty property of mulivariate Lagrange interpolation, Math. Comp., 66, № 220, 1561 – 1577 (1997)б https://doi.org/10.1090/S0025-5718-97-00858-2 DOI: https://doi.org/10.1090/S0025-5718-97-00858-2
B. Bojanov, H. Hakopian, A. Sahakian, Spline functions and multivariate interpolations, Springer-Verlag, Amsterdam (1993), https://doi.org/10.1007/978-94-015-8169-1 DOI: https://doi.org/10.1007/978-94-015-8169-1
L. Bos, On certain configurations of points in $R^n$ which are unisolvent for polynomial interpolation, J. Approx. Theory, 64, 271 – 280 (1991)б https://doi.org/10.1016/0021-9045(91)90063-G DOI: https://doi.org/10.1016/0021-9045(91)90063-G
L. Bos, J.-P.Calvi, Multipoint Taylor interpolation, Calcolo, 45, № 1, 35 – 51 (2008). DOI: https://doi.org/10.1007/s10092-008-0142-7
L. Bos, J.-P.Calvi, Taylorian points of an algebraic curve and bivariate Hermite interpolation, Ann. Scuola Norm. Super. Pisa Cl. Sci, 7, 545 – 577 (2008), https://doi.org/10.1007/s10092-008-0142-7 DOI: https://doi.org/10.2422/2036-2145.2008.3.06
J.-P. Calvi, V. M. Phung , On the continuity of multivariate Lagrange interpolation at natural lattices, L.M.S. J. Comp. Math., 16, 45 – 60 (2013), https://doi.org/10.1112/S1461157013000016 DOI: https://doi.org/10.1112/S1461157013000016
J.-P. Calvi, V. M. Phung, Can we define Taylor polynomials on algebraic curves?, Ann. Polon. Math., 118, № 1, 1 – 24 (2016), https://doi.org/10.4064/ap3996-9-2016
K. C. Chung, T. H. Yao, On lattices admitting unique Lagrange interpolation, SIAM J. Numer. Anal., 14, № 4, 735 – 743 (1977), https://doi.org/10.1137/0714050 DOI: https://doi.org/10.1137/0714050
V. M. Phung, On bivariate Hermite interpolation and the limit of certain bivariate Lagrange projectors, Ann. Polon. Math., 115, № 1, 1 – 21 (2015), https://doi.org/10.4064/ap115-1-1 DOI: https://doi.org/10.4064/ap115-1-1
V. M. Phung, Polynomial interpolation in ${R}^2$ and on the unit sphere in ${R}^3$, Acta Math. Hung., 153, № 2, 289 – 317 (2017), https://doi.org/10.1007/s10474-017-0760-0 DOI: https://doi.org/10.1007/s10474-017-0760-0
V. M. Phung, Hermite interpolation on the unit sphere and the limits of Lagrange projectors, IMA J. Numer. Anal., 41, № 2, 1441 – 1464 (2021), https://doi.org/10.1093/imanum/draa026 DOI: https://doi.org/10.1093/imanum/draa026
Y. Xu, Polynomial interpolation on the unit sphere and on the unit ball, Adv. Comput. Math., 20, № 1-3, 247 – 260 (2004), https://doi.org/10.1023/A:1025851005416 DOI: https://doi.org/10.1023/A:1025851005416
Copyright (c) 2022 Van Manh Phung, Van Trao Nguyen, Huu Lam Dinh
This work is licensed under a Creative Commons Attribution 4.0 International License.