On multiplicative (generalized)-$(\alpha,\beta)$-derivations in prime rings

  • Chirag Garg Department of Mathematics, Deshbandhu College, University of Delhi, India
  • R. K. Sharma Department of Mathematics, Indian Institute of Technology Delhi, India
Keywords: multiplicative (generalized)-derivations

Abstract

UDC 512.5

We discuss some algebraic identities related to multiplicative (generalized)-derivations and multiplicative (generalized)-$(\alpha,\beta)$-derivations on appropriate subsets in prime rings.

References

E. Albas, Generalized derivations on ideals of prime rings, Miskolc Math. Notes, 14, 3–9 (2002). DOI: https://doi.org/10.18514/MMN.2013.499

S. Ali, B. Dhara, N. A. Dar, A. N. Khan, On Lie ideals with multiplicative (generalized)-derivations in prime and semiprime rings, Beitr. Algebra und Geom. (2014); DOI:10.1007/s13366-013-186-y. DOI: https://doi.org/10.1007/s13366-013-0186-y

M. Ashraf, N. Rehman, On commutativity of rings with derivations, Results Math., 42, 3–8 (2002). DOI: https://doi.org/10.1007/BF03323547

H. E. Bell, M. N. Daif, On derivations and commutativity in prime rings, Acta Math. Hungar., 66, 337–343 (1995). DOI: https://doi.org/10.1007/BF01876049

J. Bergen, I. N. Herstein, J. W. Kerr, Lie ideals and derivations of prime rings, J. Algebra, 71, 259–267 (1981). DOI: https://doi.org/10.1016/0021-8693(81)90120-4

M. Brešar, On the distance of the composition of two derivations to the generalized derivations, Glasgow Math. J., 33, 89–93 (1991). DOI: https://doi.org/10.1017/S0017089500008077

M. N. Daif, H. E. Bell, Remarks on derivations on semiprime rings, Int. J. Math. and Math. Sci., 15, 205–206 (1992). DOI: https://doi.org/10.1155/S0161171292000255

M. N. Daif, M. S. Tammam El-Sayiad, Multiplicative generalized derivations which are additive, East-West J. Math., 9, 31–37 (1997).

M. N. Daif, When is a multiplicative derivation additive, Int. J. Math. and Math. Sci., 14, 615–618 (1991). DOI: https://doi.org/10.1155/S0161171291000844

B. Dhara, S. Ali, On multiplicative (generalized)-derivations in prime and semiprime rings, Aequationes Math., 86, 65–79 (2013). DOI: https://doi.org/10.1007/s00010-013-0205-y

B. Dhara, S. Kar, D. Das, A multiplicative (generalized)-$(σ,σ)$-derivation acting as (anti-)homomorphism in semiprime rings, Palest. J. Math., 3, 240–246 (2014).

C. Garg, R. K. Sharma, On generalized $(α,β)$-derivations in prime rings, Rend. Circ. Mat. Palermo, 65, 175–184 (2016). DOI: https://doi.org/10.1007/s12215-015-0227-5

O. Golbasi, E. Koc, Generalized derivations of Lie ideals in prime rings, Turk. J. Math., 35, 23–28 (2011). DOI: https://doi.org/10.3906/mat-0807-27

H. Goldmann, P. Šemrl, Multiplicative derivations on $C(X)$, Monatsh. Math., 121, 189–197 (1996). DOI: https://doi.org/10.1007/BF01298949

S. Khan, On semiprime rings with multiplicative (generalized)-derivations, Beitr. Algebra und Geom. (2015); DOI: 10.1007/s13366-015-0241-y. DOI: https://doi.org/10.1007/s13366-015-0241-y

E. C. Posner, Derivations in prime rings, Proc. Amer. Math. Soc., 8, 1093–1100 (1957). DOI: https://doi.org/10.1090/S0002-9939-1957-0095863-0

N. Rehman, On commutativity of rings with generalized derivations, Math. J. Okayama Univ., 44, 43–49 (2002).

Published
28.02.2024
How to Cite
Garg, C., and R. K. Sharma. “On Multiplicative (generalized)-$(\alpha,\beta)$-Derivations in Prime Rings”. Ukrains’kyi Matematychnyi Zhurnal, Vol. 76, no. 2, Feb. 2024, pp. 289-97, doi:10.3842/umzh.v76i2.654.
Section
Research articles