Rejection lemma and almost split sequences

Authors

  • Yu. A. Drozd Inst. Math. Acad. Sci. Ukraine, Kiev

DOI:

https://doi.org/10.37863/umzh.v73i6.6580

Keywords:

lattices, orders, bijective lattices, almost split sequences, Auslander-Reiten quivers, stable categories

Abstract

UDC 512.55

We study the behavior of almost split sequences and Auslander – Reiten quivers of an order under rejection of bijective modules as defined in [Ю. А. Дрозд, В. В. Кириченко, О квазибассовых порядках, Изв. АН СССР. Сер. мат., 36, 328 – 370 (1972)]. In particular, we establish relations of stable categories and almost split sequences for an order A and the order A obtained from A by such a rejection. These results are refined for the Gorenstein and Frobenius cases.

References

M. Auslander, I. Reiten, Almost split sequences for Cohen – Macaulay modules, Math. Ann., 277, № 2б 345 – 349 (1987), https://doi.org/10.1007/BF01457367 DOI: https://doi.org/10.1007/BF01457367

M. Auslander, I. Reiten, S. Smalø, Representation theory of Artin algebras, Cambridge Univ. Press (1997).

W. Bruns, J. Herzog, Cohen – Macaulay rings, Cambridge Univ. Press (1993).

Ch. W. Curtis, I. Reiner, Methods of representation theory, Vol. 1, John Wiley & Sons (1981).

V. Dlab, C. M. Ringel, Indecomposable representations of graphs and algebras, Mem. Amer. Math. Soc., 173 (1976), https://doi.org/10.1090/memo/0173 DOI: https://doi.org/10.1090/memo/0173

Yu. A. Drozd, V. V. Kirichenko, O kvazibassovy`kh poryadkakh, Izv. AN SSSR. Ser. mat., 36, 328 – 370 (1972).

Yu. A. Drozd, V. V. Kirichenko, Primarny`e poryadki s konechny`m chislom nerazlozhimy`kh predstavlenij, Izv. AN SSSR. Ser. mat., 37, 715 – 736 (1973).

Yu. A. Drozd, V. V. Kirichenko, Konechnomerny`e algebry`, Vishha shk., Kiev (1994).

Yu. A. Drozd, V. V. Kirichenko, A. V. Rojter, O nasledstvenny`kh i bassovy`kh poryadkakh, Izv. AN SSSR. Ser. mat., 31, 1415 – 1436 (1967).

Yu. Drozd, A. Plakosh, Cohomologies of the Kleinian 4-group, Arch. Math., 115, no. 2, 139 – 145 (2020), https://doi.org/10.1007/s00013-020-01451-6 DOI: https://doi.org/10.1007/s00013-020-01451-6

H. Hijikata, K. Nishida, Bass orders in non semisimple algebras, J. Math. Kyoto Univ., 34, no. 4, 797 – 837 (1994), https://doi.org/10.1215/kjm/1250518887 DOI: https://doi.org/10.1215/kjm/1250518887

H. Hijikata, K. Nishida, Primary orders of finite representation type, J. Algebra, 192, no. 2, 592 – 640 (1997), https://doi.org/10.1006/jabr.1996.6946 DOI: https://doi.org/10.1006/jabr.1996.6946

B. Keller, Derived categories and their use, Handbook Algebra, vol. 1, 671 – 701 (1996)б https://doi.org/10.1016/S1570-7954(96)80023-4 DOI: https://doi.org/10.1016/S1570-7954(96)80023-4

T. Y. Lam, A first Course in noncommutative rings, Springer (1991)б https://doi.org/10.1007/978-1-4684-0406-7 DOI: https://doi.org/10.1007/978-1-4684-0406-7

E. Matlis, Injective modules over Noetherian rings, Pacif. J. Math., 8, 511 – 528 (1958). DOI: https://doi.org/10.2140/pjm.1958.8.511

H. Matsumura, Commutative algebra, The Benjamin/Cummings Publ. Com. (1980).

К. W. Roggenkamp, Gorenstein orders of finite representation type and bijective lattices, Lect. Notes Math., 1178, 243 – 270 (1986), https://doi.org/10.1007/BFb0075298 DOI: https://doi.org/10.1007/BFb0075298

A. V. Roiter, Analog odnoj teoremy` Bassa dlya modulej predstavlenij nekommutativny`kh poryadkov, Dokl. AN SSSR, 168, 1261 – 1264 (1966).

Published

18.06.2021

Issue

Section

Research articles

How to Cite

Drozd, Yu. A. “Rejection Lemma and Almost Split Sequences”. Ukrains’kyi Matematychnyi Zhurnal, vol. 73, no. 6, June 2021, pp. 780-98, https://doi.org/10.37863/umzh.v73i6.6580.