Geometric structures on the orbits of loop diffeomorphism groups and related “heavenly-type” Hamiltonian systems. I

  • O. E. Hentosh In-t app. problem of Mechanics and Mathematics of the National Academy of Sciences of Ukraine, Lviv
  • Ya. A. Prykarpatskyy Institute of Mathematics of the National Academy of Sciences of Ukraine, Kyiv, and University of Agriculture, Krakow, Poland
  • A. A. Balinsky Math. Institute of Cardiff University, Great Britain
  • A. K. Prykarpatski Kraków Institute of Mathematics. University of Technology, Poland

Abstract

UDC 517.9

 review of differential-geometric and Lie-algebraic approaches to the study of a broad class of nonlinear integrable   differential systems of ``heavenly'' type associated with Hamiltonian flows on the spaces conjugate to the loop Lie algebras of vector fields on the tori.  These flows are generated by the corresponding orbits of the coadjoint action of the diffeomorphism loop group and satisfy the Lax–Sato-type vector-field compatibility conditions.  The corresponding hierarchies of conservation laws and their relationships with Casimir invariants are analyzed.  Typical examples of these systems are considered and their complete integrability is established by using the developed Lie-algebraic construction.  We describe new generalizations of the integrable dispersion-free systems of ``heavenly'' type for which the corresponding generating elements of orbits have a factorized structure, which allows their extension to the multidimensional case.

Author Biography

A. K. Prykarpatski , Kraków Institute of Mathematics. University of Technology, Poland

 

 

References

M. Arik, F. Neyzi, Y. Nutku, P. J. Olver, J. Verosky, Multi-Hamiltonian structure of the Born – Infeld equation, J. Math. Phys., 30, № 6, 1338--1344 (1988), https://doi.org/10.1063/1.528314 DOI: https://doi.org/10.1063/1.528314

N. N. Bogoliubov, Yu. A. Mitropolski, A. M. Samoilenko, Accelerated convergence method in non-linear mechanics (in Russian), Naukova Dumka, Kyiv, 247 pp.(1969).

J. C. Brunelli, M. Gurses, K. Zheltukhin, On the integrability of a class of Monge – Ampere equations, arXiv:hepth/9906233v1 29 Jun 1999, https://doi.org/10.1142/S0129055X01000764 DOI: https://doi.org/10.1142/S0129055X01000764

A. Das, Integrable models, World Sci. (1989), https://doi.org/10.1142/9789812799203 DOI: https://doi.org/10.1142/0858

B. Doubrov, E. V. Ferapontov, On the integrability of symplectic Monge – Ampere equations, J. Geom. Phys., 60, № 10, 1604 – 1616 (2010); arXiv:0910.3407v2 [math.DG] 13 Apr 2010, https://doi.org/10.1016/j.geomphys.2010.05.009

B. Doubrov, E. V. Ferapontov, B. Kruglikov, V. S. Novikov, On a class of integrable systems of Monge – Ampere type, arXiv:1701.02270v1 [nlin.SI] 9 Jan 2017, https://doi.org/10.1063/1.4984982 DOI: https://doi.org/10.1063/1.4984982

P. G. Drazin, R. S. Johnson, Solitons: an introduction, Cambridge Univ. Press (1989), https://doi.org/10.1017/CBO9781139172059 DOI: https://doi.org/10.1017/CBO9781139172059

E. Ferapontov, B. S. Kruglikov, Dispersionless integrable systems in 3D and Einstein – Weyl geometry, J. Different. Geom., 97, 215 – 254 (2014). DOI: https://doi.org/10.4310/jdg/1405447805

E. V. Ferapontov, J. Moss, Linearly degenerate PDEs and quadratic line complexes, arXiv:1204.2777v1 [math.DG] 12 Apr 2012.

O. E. Hentosh, Ya. A. Prykarpatsky, The Lax – Sato integrable heavenly equations on functional supermanifolds and their Lie-algebraic structure, European J. Math. (2018), https://doi.org/10.1007/s40879-019-00329-4

M. Manas, E. Medina, L. Martinez-Alonso, On the Whitham hierarchy: dressing scheme, string equations and additional symmetries, J. Phys. A: Math. and Gen., 39, 2349 – 2381 (2006), https://doi.org/10.1088/0305-4470/39/10/008 DOI: https://doi.org/10.1088/0305-4470/39/10/008

O. I. Morozov, A two-component generalization of the integrable $rd$-Dym equation, SIGMA, 8, Article 051 (2012), https://doi.org/10.3842/SIGMA.2012.051 DOI: https://doi.org/10.3842/SIGMA.2012.051

L. P. Nizhnik, The inverse scattering problems for the hyperbolic equations and their applications to non-linear integrable equations, Rep. Math. Phys., 26, № 2, 261 – 283 (1988), https://doi.org/10.1016/0034-4877(88)90028-6 DOI: https://doi.org/10.1016/0034-4877(88)90028-6

L. P. Nizhnik, Inverse scattering problem for he wave equation and its application, Parameter Identification and Inverse Problems in Hydrology, Geology and Ecology, Kluwer Acad. Publ. (1996), p. 233 – 238, https://doi.org/10.1007/978-94-009-1704-0_15 DOI: https://doi.org/10.1007/978-94-009-1704-0_15

L. P. Nizhnik, M. D. Pochynaiko, The integration of a spatially two-dimensional Schrodinger equation by the inverse problem method, Func. Anal. and Appl., 16, № 1, 80 – 82 (1982) (in Russian). DOI: https://doi.org/10.1007/BF01081819

S. P. Novikov, S. V. Manakov, L. P. Pitaevskii, V. E. Zakharov, Theory of solitons. The inverse scattering method, Springer (1984).

P. J. Olver, Y. Nutku, Hamiltonian structures for systems of hyperbolic conservation laws, J. Math. Phys., 29 (1988), https://doi.org/10.1063/1.527909 DOI: https://doi.org/10.1063/1.527909

D. Blackmore, A. K. Prykarpatsky, Y. A. Prykarpatsky, A. M. Samoilenko, Theory of multidimensional Delsarte – Lions transmutation operators. I, Ukr. Math. J., 70, № 12, 1913 – 1952 (2019), https://doi.org/10.1007/s11253-019-01617-8 DOI: https://doi.org/10.1007/s11253-019-01617-8

D. Blackmore, A. K. Prykarpatsky, Y. A. Prykarpatsky, A. M. Samoilenko, Theory of multidimensional Delsarte – Lions transmutation operators. II, Ukr. Math. J., 71, № 2, 345 – 361 (2019), https://doi.org/10.1007/s11253-019-01689-6 DOI: https://doi.org/10.1007/s11253-019-01689-6

B. Szablikowski, Hierarchies of Manakov – Santini type by means of Rota – Baxter and other identities, SIGMA, 12, Article 022 (2016), https://doi.org/10.3842/SIGMA.2016.022 DOI: https://doi.org/10.3842/SIGMA.2016.022

M. B. Sheftel, D. Yazıcı, Bi-Hamiltonian representation, symmetries and integrals of mixed heavenly and Husain systems, arXiv:0904.3981v4 [math-ph] 4 May 2010, https://doi.org/10.1142/S1402925110001021 DOI: https://doi.org/10.1142/S1402925110001021

M. B. Sheftel, D. Yazıcı, Evolutionary Hirota type (2+1)-dimensional equations: Lax pairs, recursion operators and bi-Hamiltonian structures, SIGMA, 14, Article 017 (2018); arXiv:1712.01549v1 [math-ph] 5 Dec 201, https://doi.org/10.3842/SIGMA.2018.017 DOI: https://doi.org/10.3842/SIGMA.2018.017

L. A. Takhtajan, L. D. Faddeev, Hamiltonian approach in soliton theory, Springer, Berlin, Heidelberg (1987).

P. P. Kulish, Analog uravneniya Kortevega – de Friza dlya superkonformnoj algebry, Zap. nauch. sem. LOMI, 155, 142 – 148 (1986).

V. G. Mihalev, O gamil'tonovom formalizme ierarhij tipa Kortevega – de Friza, Funkc. analiz i ego pril., 26, № 2, 79 – 82 (1992).

V. Ovsienko, C. Roger, Looped cotangent Virasoro algebra and non-linear integrable systems in dimension $2+1$, Commun. Math. Phys., 273, № 2, 357 – 378 (2007), https://doi.org/10.1007/s00220-007-0237-z DOI: https://doi.org/10.1007/s00220-007-0237-z

V. Ovsienko, Bi-Hamiltonian nature of the equation $u_{tx}=u_{xy}u_y-u_{yy}u_x$, Adv. Pure and Appl. Math., 1, № 1, 7 – 10 (2008); arXiv:0802.1818v1 (2008), https://doi.org/10.1515/APAM.2010.002

A. Sergyeyev, B. M. Szablikowski, Central extensions of cotangent universal hierarchy: $(2 + 1)$-dimensional biHamiltonian systems, Phys. Lett. A, 372, № 47, 7016 – 7023 (2008), https://doi.org/10.1016/j.physleta.2008.10.020 DOI: https://doi.org/10.1016/j.physleta.2008.10.020

A. K. Prykarpatski, O. Ye. Hentosh, Ya. A. Prykarpatsky, The differential-geometric and algebraic aspects of the Lax – Sato theory, Mathematics, 5, № 4, MDPI, Basel, Switzerland (2017), https://doi.org/10.3390/math5040075 DOI: https://doi.org/10.3390/math5040075

O. Ye. Hentosh, Ya. A. Prykarpatsky, D. Blackmore, A. K. Prykarpatski, Dispersionless completely integrable heavenly type Hamiltonian flows and their differential-geometric structure, Symmetry, Integrability and Geom.: Methods and Appl., 15, Article 079 (2019); https://doi.org/10.3842/SIGMA.2019.079 DOI: https://doi.org/10.17352/amp.000006

O. Ye. Hentosh, Ya. A. Prykarpatsky, D. Blackmore, A. K. Prykarpatski, Lie-algebraic structure of Lax – Sato integrable heavenly equations and the Lagrange – d’Alembert principle, 120, Article 208 (2017); https://doi.org/10.1016/j.geomphys.2017.06.003 DOI: https://doi.org/10.1016/j.geomphys.2017.06.003

J. F. Plebanski, Some solutions of complex Einstein equations, J. Math. Phys., 16, № 12, 2395 – 2402 (1975), https://doi.org/10.1063/1.522505 DOI: https://doi.org/10.1063/1.522505

S. V. Manakov, P. M. Santini, Inverse scattering problem for vector fields and the Cauchy problem for the heavenly equation, Phys. Lett. A, 359, № 6, 613 – 619 (2006), https://doi.org/10.1016/j.physleta.2006.07.011 DOI: https://doi.org/10.1016/j.physleta.2006.07.011

L. V. Bogdanov, V. S. Dryuma, S. V. Manakov, Dunajski generalization of the second heavenly equation: dressing method and the hierarchy, J. Phys. A: Math. Theor., 40, № 48, 14383 – 14393 (2007), https://doi.org/10.1088/1751-8113/40/48/005 DOI: https://doi.org/10.1088/1751-8113/40/48/005

M. Dunajski, Anti-self-dual four-manifolds with a parallel real spinor, Proc. Roy. Soc. A, 458, 1205 – 1222 (2002), https://doi.org/10.1098/rspa.2001.0918 DOI: https://doi.org/10.1098/rspa.2001.0918

M. Dunajski, L. J. Mason, P. Tod, Einstein – Weyl geometry, the dKP equation and twistor theory, J. Geom. Phys., 37, № 1-2, 63 – 93 (2001), https://doi.org/10.1016/S0393-0440(00)00033-4 DOI: https://doi.org/10.1016/S0393-0440(00)00033-4

M. P. Pavlov, Integrable hydrodynamic chains, J. Math. Phys., 44, № 9, 4134 – 4156 (2003), https://doi.org/10.1063/1.1597946 DOI: https://doi.org/10.1063/1.1597946

W. K. Schief, Self-dual Einstein spaces via a permutability theorem for the Tzitzeica equation, Phys. Lett. A, 223, № 1-2, 55 – 62 (1996), https://doi.org/10.1016/S0375-9601(96)00703-7 DOI: https://doi.org/10.1016/S0375-9601(96)00703-7

W. K. Schief, Self-dual Einstein spaces and a discrete Tzitzeica equation. A permutability theorem link, Symmetries and Integrability of Difference Equations, London Math. Soc., Lect. Notes Ser., 255, 137 – 148 (1999), https://doi.org/10.1017/CBO9780511569432.012 DOI: https://doi.org/10.1017/CBO9780511569432.012

K. Takasaki, T. Takebe, SDiff(2) Toda equation – hierarchy, tau function and symmetries, Lett. Math. Phys., 23, № 3, 205 – 214 (1991), https://doi.org/10.1007/BF01885498 DOI: https://doi.org/10.1007/BF01885498

K. Takasaki, T. Takebe, Integrable hierarchies and dispersionless limit, Rev. Math. Phys., 7, № 5, P. 743 – 808 (1995), https://doi.org/10.1142/S0129055X9500030X DOI: https://doi.org/10.1142/S0129055X9500030X

A. G. Rejman, M. A. Semenov-Tyan-SHanskij, Integriruemye sistemy: teoretiko-gruppovoj podhod, In-t komp'yuter. issled., Moskva, Izhevsk (2003).

M. Blaszak, Classical $R$-matrices on Poisson algebras and related dispersionless systems, Phys. Lett. A, 297, № 3-4, 191 – 195 (2002), https://doi.org/10.1016/S0375-9601(02)00421-8 DOI: https://doi.org/10.1016/S0375-9601(02)00421-8

M. Blaszak, B. M. Szablikowski, Classical $R$-matrix theory of dispersionless systems: II. (2 + 1) dimension theory, J. Phys. A: Math. and Gen., 35, № 48, 10345 – 10364 (2002), https://doi.org/10.1088/0305-4470/35/48/309 DOI: https://doi.org/10.1088/0305-4470/35/48/309

D. Blackmore, A. K. Prykarpatsky, V. Hr. Samoylenko, Nonlinear dynamical systems of mathematical physics: spectral and symplectic integrability analysis, World Sci., Hackensack (2011), https://doi.org/10.1142/9789814327169https://doi.org/10.1142/9789814327169 DOI: https://doi.org/10.1142/7960

A. Alekseev, A. Z. Malkin, Symplectic structure of the moduli space of flat connection on a Riemann surface, Comm. Math. Phys., 169, № 1, 99 – 119 (1995). DOI: https://doi.org/10.1007/BF02101598

A. Pressley, G. Segal, Loop groups, Clarendon Press, London (1988).

M. Audin, Lectures on gauge theory and integrable systems, Gauge Theory and Symplectic Geometry, Kluwer (1997), p. 1 – 48. DOI: https://doi.org/10.1007/978-94-017-1667-3_1

O. Hentosh, Ya. Prykarpatsky, The Lax – Sato integrable heavenly equations on functional supermanifolds and their Lie-algebraic structure, European J. Math. (2019); https://doi.org/10.1007/s40879-019-00329-4 DOI: https://doi.org/10.1007/s40879-019-00329-4

I. A. B. Strachan, B. M. Szablikowski, Novikov algebras and a classification of multicomponent Camassa – Holm equations, Stud. Appl. Math., 133, 84 – 117 (2014), https://doi.org/10.1111/sapm.12040 DOI: https://doi.org/10.1111/sapm.12040

O. D. Artemovych, A. A. Balinsky, D. Blackmore, A. K. Prykarpatski, Reduced pre-Lie algebraic structures, the weak and weakly deformed Balinsky – Novikov type symmetry algebras and related Hamiltonian operators, Symmetry, 10, Article 601 (2018), https://doi.org/10.15673/tmgc.v12i4.1554 DOI: https://doi.org/10.3390/sym10110601

O. D. Artemovych, D. Blackmore, A. K. Prykarpatski, Examples of Lie and Balinsky – Novikov algebras related to Hamiltonian operators, Top. Algebra and Appl., 6, № 1, 43 – 52 (2018), https://doi.org/10.1515/taa-2018-0005 DOI: https://doi.org/10.1515/taa-2018-0005

O. D. Artemovych, D. Blackmore, A. K. Prykarpatski, Poisson brackets, Novikov – Leibniz structures and integrable Riemann hydrodynamic systems, J. Nonlinear Math. Phys., 24, № 1, 41 – 72 (2017), https://doi.org/10.1080/14029251.2016.1274114 DOI: https://doi.org/10.1080/14029251.2016.1274114

D. Blackmore, Y. Prykarpatsky, J. Golenia, A. Prykarpatski, Hidden symmetries of Lax integrable nonlinear systems, Appl. Math., 4, 95 – 116 (2013), https://doi.org/10.4236/am.2013.410A3013 DOI: https://doi.org/10.4236/am.2013.410A3013

M. A. Semenov-Tyan-Shanskij, What a classical $r$-matrix is. (Russian), Funkc. analiz i ego pril., 17, № 4, 17 – 33 (1983).

R. Abraham, J. Marsden, Foundations of mechanics, 2nd ed., Addison-Wesley Publ. Co., Inc., Redwood City, CA (1978).

V. I. Arnold, Mathematical methods of classical mechanics, Grad. Texts Math., vol. 60, Springer, New York (1978). DOI: https://doi.org/10.1007/978-1-4757-1693-1

V. I. Arnold, B. A. Khesin, Topological methods in hydrodynamics, Appl. Math. Sci., vol. 125, Springer-Verlag, New York (1998). DOI: https://doi.org/10.1007/b97593

T. Kambe, Geometric theory of fluid flows and dynamical systems, Fluid Dyn. Res., 30, 331 – 378 (2002), https://doi.org/10.1016/S0169-5983(02)00063-1 DOI: https://doi.org/10.1016/S0169-5983(02)00063-1

J. Marsden, T. Ratiu, A. Weinstein, Reduction and Hamiltoninan structures on duals of semidirect product Lie algebras, Contemp. Math., 28, 55 – 100 (1984), https://doi.org/10.1090/conm/028/751975 DOI: https://doi.org/10.1090/conm/028/751975

D. Holm, J. Marsden, T. Ratiu, A. Weinstein, Nonlinear stability of fluid and plasma equilibria, Phys. Rep., 123, № 1-2, 1 – 116 (1985), https://doi.org/10.1016/0370-1573(85)90028-6 DOI: https://doi.org/10.1016/0370-1573(85)90028-6

V. I. Arnold, Sur la geometrie differentielle des groupes de Lie de dimension infinie et ses applications a

l’hydrodynamique des fluides parfaits, Ann. Inst. Fourier (Grenoble), 16, № 1, 319 – 361 (1966). DOI: https://doi.org/10.5802/aif.233

D. Holm, B. Kupershmidt, Poisson structures of superfluids, Phys. Lett. A, 91, 425 – 430 (1982), https://doi.org/10.1016/0375-9601(82)90740-X DOI: https://doi.org/10.1016/0375-9601(82)90740-X

E. A. Kuznetsov, A. V. Mikhailov, On the topological meaning of canonical Clebsch variables, Phys. Lett. A, 77, № 1, 37 – 38 (1980), https://doi.org/10.1016/0375-9601(80)90627-1 DOI: https://doi.org/10.1016/0375-9601(80)90627-1

Published
04.10.2022
How to Cite
Hentosh , O. E., Y. A. Prykarpatskyy, A. A. Balinsky, and A. K. Prykarpatski. “Geometric Structures on the Orbits of Loop Diffeomorphism Groups and Related ‘heavenly-type’ Hamiltonian Systems. I”. Ukrains’kyi Matematychnyi Zhurnal, Vol. 74, no. 8, Oct. 2022, pp. 1029 -59, doi:10.37863/umzh.v74i8.6614.
Section
Research articles