An analog of the Men’shov – Trokhimchuk theorem for monogenic functions in a three-dimensional commutative algebra
Abstract
UDC 517.54
The aim of this work is to weaken the conditions of monogeneity for functions that take values in a given three-dimensional commutative algebra over the field of complex numbers.
The monogeneity of the function is understood as a combination of its continuity and the existence of the Gateaux derivative.
References
E. Goursat, Cours d’analyse mathematique, vol. 2, Gauthier-Villars, Paris (1910).
H. Bohr, Uber streckentreue und konforme Abbildung, Math. Z., 1, 403 – 420 (1918), https://doi.org/10.1007/BF01465097 DOI: https://doi.org/10.1007/BF01465097
H. Rademacher, Uber streckentreue und winkeltreue Abbildung ¨ , Math. Z., 4, 131 – 138 (1919), https://doi.org/10.1007/BF01203392 DOI: https://doi.org/10.1007/BF01203392
D. Menchov, Sur les differentielles totales des fonctions univalentes, Math. Ann., 105, 75 – 85 (1931), https://doi.org/10.1007/BF01455809 DOI: https://doi.org/10.1007/BF01455809
D. Menchov, Sur les fonctions monogenes, Bull. Soc. Math. France, 59, 141 – 182 (1931). DOI: https://doi.org/10.24033/bsmf.1178
D. Menchov, Les conditions de monogeneite, Act. Sci. Ind., № 329 (1936).
V. S. Fedorov, O monogenny`kh funkcziyakh, Mat. sb., 42, № 4, 485 – 500 (1935).
G. P. Tolstov, O krivolinejnom i povtornom integrale, Tr. Mat. in-ta AN SSSR, 35, 3 – 101 (1950).
Yu. Yu. Trokhimchuk, Neprery`vny`e otobrazheniya i usloviya monogennosti, Fizmatiz, Moskva (1963).
Yu. Yu. Trokhimchuk, Differenczirovanie, vnutrennie otobrazheniya i kriterii analitichnosti, Praczi In-t matematiki NAN Ukrayini, 70 (2007).
G. Kh. Sindalovskij, O differencziruemosti i analitichnosti odnolistny`kh otobrazhenij, Dokl. AN SSSR, 249, № 6, 1325 – 1327 (1979).
G. Kh. Sindalovskij, Ob usloviyakh Koshi – Rimana v klasse funkczij s summiruemy`m modulem i nekotory`kh granichny`kh svojstvakh analiticheskikh funkczij, Mat. sb., 128(170), № 3(11), 364 – 382 (1985).
D. S. Telyakovskij, Obobshhenie odnoj teoremy` Men`shova o monogenny`kh funkcziyakh, Izv. AN SSSR, ser. mat., 53, № 4, 886 – 896 (1989).
D. S. Telyakovskij, O golomorfnosti funkczij, kotory`e zadayut otobrazheniya, sokhranyayushhie ugly`, Mat. zametki, 56, № 5, 149 – 154 (1994).
D. S. Telyakovskij, Ob oslablenii usloviya asimptoticheskoj monogennosti, Mat. zametki,60, № 6, 902 – 911 (1996). DOI: https://doi.org/10.4213/mzm1908
D. S. Telyakovskij, Obobshhenie teoremy` Men`shova o funkcziyakh, udovletvoryayushhikh usloviyu $K''$, Mat. zametki, 76, № 4, 578 – 591 (2004). DOI: https://doi.org/10.4213/mzm133
E. P. Dolzhenko, Raboty` D. E. Men`shova po teorii analiticheskikh funkczij i sovremennoe sostoyanie teorii monogennosti, Uspekhi mat. nauk, 47, № 5, 67 – 96 (1992).
M. T. Brodovich, Ob otobrazheniyakh prostranstvennoj oblasti, sokhranyayushhikh ugly` i rastyazheniya vdol` sistemy` luchej, Sib. mat. zhurn., 38, № 2, 260 – 262 (1997). DOI: https://doi.org/10.1007/BF02674619
A. V. Bondar`, Mnogomernoe obobshhenie odnoj teoremy` D. E. Men`shova, Ukr. mat. zhurn., 30, № 4, 435 – 443 (1978).
A. V. Bondar`, Lokal`ny`e geometricheskie kharakteristiki golomorfny`kh otobrazhenij, Nauk. dumka, Kiev (1992).
V. I. Siry`k, Nekotory`e kriterii golomorfnosti neprery`vny`kh otobrazhenij, Ukr. mat. zhurn., 37, № 6, 751 – 756 (1985).
O. S. Grecz`kij, Pro $C$ -diferenczijovnist` vidobrazhen` banakhovikh prostoriv, Ukr. mat. zhurn., 46, № 10, 1336 – 1342 (1994).
E. Hille, R. S. Phillips, Functional analysis and semi-groups, Amer. Math. Soc., Providence, R. I. (1957).
S. A. Plaksa, R. P. Pukhtaievych, Monogenic functions in a finite-dimensional semi-simple commutative algebra, An. ¸Stiin¸t. Univ. “Ovidius” Constan¸ta, Ser. Mat., 22, № 1, 221 – 235 (2014). https://doi.org/10.2478/auom-2014-0018 DOI: https://doi.org/10.2478/auom-2014-0018
V. Shpakivskyi, Constructive description of monogenic functions in a finite-dimensional commutative associative algebra, Adv. Pure and Appl. Math., 7, № 1, 63 – 75 (2016), https://doi.org/10.1515/apam-2015-0022 DOI: https://doi.org/10.1515/apam-2015-0022
I. P. Mel`nichenko, S. A. Plaksa, Kommutativny`e algebry` i prostranstvenny`e polya, Praczi In-t matematiki NAN Ukrayini, 71 (2008).
S. A. Plaksa, V. S. Shpakovskii, Constructive description of monogenic functions in a harmonic algebra of the third rank, Ukr. Math. J., 62, № 8, 1251 – 1266 (2011), https://doi.org/10.1007/s11253-011-0427-x DOI: https://doi.org/10.1007/s11253-011-0427-x
P. W. Ketchum, Analytic functions of hypercomplex variables, Trans. Amer. Math. Soc., 30, 641 – 667 (1928), https://doi.org/10.2307/1989440 DOI: https://doi.org/10.1090/S0002-9947-1928-1501452-7
I. P. Mel’nichenko, The representation of harmonic mappings by monogenic functions, Ukr. Math. J., 27, № 5, 499 – 505 (1975). DOI: https://doi.org/10.1007/BF01089142
G. Scheffers, Verallgemeinerung der Grundlagen der gewohnlich complexen Funktionen, I, II ¨ , Ber. Verh. Sachs. Akad. Wiss. Leipzig Math.-Phys. Kl., 45, 828 – 848 (1893); 46, 120 – 134 (1894).
E. R. Lorch, The theory of analytic function in normed abelian vector rings, Trans. Amer. Math. Soc., 54, 414 – 425 (1943), https://doi.org/10.2307/1990255 DOI: https://doi.org/10.1090/S0002-9947-1943-0009090-0
S. A. Plaksa, Commutative algebras associated with classic equations of mathematical physics, Adv. Appl. Anal., Trends Math., 177 – 223 (2012), https://doi.org/10.1007/978-3-0348-0417-2_5 DOI: https://doi.org/10.1007/978-3-0348-0417-2_5
S. A. Plaksa, Monogenic functions in commutative algebras associated with classical equations of mathematical physics, J. Math. Sci., 242, № 3, 432 – 456 (2019). DOI: https://doi.org/10.1007/s10958-019-04488-3
S. A. Plaksa, On differentiable and monogenic functions in a harmonic algebra, Zb. pracz` In-tu matematiki NAN Ukrayini, 14, № 1, 210 – 221 (2017).
M. V. Tkachuk, S. A. Plaksa, Analog teoremi Men`shova – Trokhimchuka dlya monogennikh funkczij v trivimirnij komutativnij algebri, e-print: arXiv:2006.12492v1 [math.CA], 2020.
Copyright (c) 2021 Максим Ткачук, Сергій Плакса
This work is licensed under a Creative Commons Attribution 4.0 International License.