Stochastic Navier–Stokes variational inequalities with unilateral boundary conditions: probabilistic weak solvability

  • M. Sango Department of Mathematics and Applied Mathematics, University of Pretoria, South Africa


UDC 519.21

We initiate the investigation of stochastic Navier–Stokes variational inequalities involving unilateral boundary conditions and nonlinear forcings driven by Wiener processes for which we establish the existence of a probabilistic weak (or martingale) solution.  Our approach involves an intermediate penalized problem whose weak solution is obtained by means of Galerkin's method in combination with some analytic and probabilistic compactness results.  The required probabilistic weak solution of the stochastic Navier–Stokes variational inequality is consecutively obtained through the limit transition in the penalized problem. The main result is new for stochastic Navier–Stokes variational inequalities. It is a stochastic counterpart of the work of Brezis on deterministic Navier–Stokes variational inequalities and generalizes several previous results on stochastic Navier-Stokes equations to stochastic Navier–Stokes variational inequalities with unilateral boundary conditions.


S. N. Antontsev, A. V. Kazhikhov, V. N. Monakhov, Boundary value problems in mechanics of nonhomogeneous fluids, Studies in Mathematics and its Applications, 22, North-Holland Publ. Co., Amsterdam (1990).

V. Barbu, S. S. Sritharan, Optimal stopping-time problem for stochastic Navier–Stokes equations and infinite-dimensional variational inequalities, Nonlinear Anal., 64, № 5, 1018–1024 (2006). DOI:

A. Bensoussan, Some existence results for stochastic partial differential equations, Stochastic Partial Differential Equations and Applications (Trento, 1990), 268, 37–53 (1992).

A. Bensoussan, Stochastic Navier–Stokes equations, Acta Appl. Math., 38, 267–304 (1995). DOI:

A. Bensoussan, J. L. Lions, Applications of variational inequalities in stochastic control, North-Holland, Amsterdam (1982).

A. Bensoussan, A. Rascanu, Stochastic variational inequalities in infinite-dimensional spaces, Numer. Funct. Anal. and Optim., 18, № 1-2, 19–54 (1997). DOI:

A. Bensoussan, R. Temam, équations stochastiques du type Navier–Stokes, J. Funct. Anal., 13, 195–222 (1973). DOI:

H. Brezis, Équations et inéquations non linéaires dans les espaces vectoriels en dualité, Ann. Inst. Fourier (Grenoble), 18, № 1, 115–175 (1968). DOI:

H. Brézis, Problèmes unilatéraux, J. Math. Pures et Appl. (9), 51, 1–168 (1972).

H. Brézis, Inéquations variationnelles relatives à l'opérateur de Navier–Stokes, J. Math. Anal. and Appl., 39, 159–165 (1972). DOI:

A. Yu. Chebotarev, A. S. Savenkova, Variational inequalities in magneto-hydrodynamics, Math. Notes, 82, № 1-2, 119–130 (2007). DOI:

A. Yu. Chebotarev, Subdifferential boundary value problems for stationary Navier–Stokes equations, Different. Equat., 28, № 8, 1189–1196 (1992).

G. Duvaut, J.-L. Lions, Inequalities in mechanics and physics, Grundlehren Math. Wiss., 219, Springer-Verlag, Berlin, New York (1976). DOI:

D. S. Konovalova, Subdifferential boundary value problems for Navier–Stokes evolution equations (in Russian), Differ. Uravn., 36, № 6, 792–798 (2000); English translation: Different. Equat., 36, № 6, 878–885 (2000).

J.-L. Lions, Quelques méthodes de résolution des problèmes aux limites non linéaires, Dunod, Gauthiers-Villars, Paris (1969).

J.-L. Lions, On some problems connected with Navier–Stokes equations, Nonlinear Evolution Equations (Proc. Symp., Univ. Wisconsin, Madison, Wis., 1977), Publ. Math. Res. Center Univ. Wisconsin, 40, Acad. Press, New York, London (1978), p. 59–84. DOI:

J.-L. Lions, G. Stampacchia, Variational inequalities, Commun. Pure and Appl. Math., 20, 493–519 (1967). DOI:

J. L. Menaldi, S. S. Sritharan, Optimal stopping time and impulse control problems for the stochastic Navier–Stokes equations, Stochastic Partial Differential Equations and Applications (Trento, 2002), Lecture Notes in Pure and Appl. Math., 227, Dekker, New York (2002), p. 389–404. DOI:

R. Mikulevicius, B. L. Rozovskii, Global $L_{2}$-solutions of stochastic Navier–Stokes equations, Ann. Probab., 33, № 1, 137–176 (2005). DOI:

R. Mikulevicius, B. L. Rozovskii, Stochastic Navier–Stokes equations for turbulent flows, SIAM J. Math. Anal., 35, № 5, 1250–1310 (2004). DOI:

Y. S. Mishura, Stochastic calculus for fractional Brownian motion and related processes, Lecture Notes in Mathematics, 1929, Springer-Verlag, Berlin (2008). DOI:

Yu. V. Prokhorov, Convergence of random processes and limit theorems in probability theory (in Russian), Teor. Veroyatn. i Primen., 1, 177–238 (1956). DOI:

A. Răşcanu, Existence for a class of stochastic parabolic variational inequalities, Stochastics, 5, № 3, 201–239 (1981). DOI:

A. Răşcanu, On some stochastic parabolic variational inequalities, Nonlinear Anal., 6, № 1, 75–94 (1982). DOI:

M. Sango, Magnetohydrodynamic turbulent flows: existence results, Physica D, 239, 912–923 (2010). DOI:

M. Sango, Density dependent stochastic Navier–Stokes equations with non-Lipschitz random forcing, Rev. Math. Phys., 22, № 6, 669–697 (2010). DOI:

A. V. Skorokhod, Limit theorems for stochastic processes, Teor. Veroyatn. i Primen., 1, 289–319 (1956). DOI:

A. V. Skorokhod, Studies in the theory of random processes, Translated from the Russian by Scripta Technica, Inc. Addison-Wesley Publ. Co., Inc., Reading, Mass (1965).

R. Temam, Navier–Stokes equations, Theory and Numerical Analysis, Studies in Mathematics and its Applications, vol. 2, North-Holland Publ. Co., Amsterdam etc. (1977).

M. I. Vishik, A. I. Komech, A. V. Fursikov, Some mathematical problems of statistical hydromechanics (in Russian), Uspekhi Mat. Nauk, 34, № 5(209), 135–210 (1979). DOI:

How to Cite
Sango, M. “Stochastic Navier–Stokes Variational Inequalities With Unilateral Boundary Conditions: Probabilistic Weak Solvability”. Ukrains’kyi Matematychnyi Zhurnal, Vol. 75, no. 4, May 2023, pp. 523 -41, doi:10.37863/umzh.v75i4.6665.
Research articles