Fredholm boundary-value problem in Sobolev – Slobodetsky spaces

  • V. A. Mikhailets Institute of Mathematics of the National Academy of Sciences of Ukraine, Kyiv
  • T. B. Skorobohach Nat. tech. University of Ukraine "KPI I. Sikorsky ”, Kyiv

Abstract

UDC 517.927

We investigate the most general class of linear one-dimensional boundary value problems whose solutions range over a given Sobolev – Slobodetsky space. We find necessary and sufficient conditions for the unique solvability of such problems and prove a criterion of continuity of their solutions with respect to a parameter in this space.

References

I. I. Gikhman, Po povodu odnoj teoremy` N. N. Bogolyubova, Ukr. mat. zhurn., № 4, 215 – 219 (1952).

M. A. Krasnosel`skij, S. G. Krejn, O princzipe usredneniya v nelinejnoj mekhanike, Uspekhi mat. nauk, 3, № 10, 147 – 153 (1955).

Ya. Kurczvejl`, Z. Vorel`, O neprery`vnoj zavisimosti reshenij linejny`kh uravnenij ot parametra, Chekhosl. mat. zhurn., 7, № 4, 568 – 583 (1957).

A. M. Samojlenko, Ob odnom sluchae neprery`vnoj zavisimosti reshenij differenczial`ny`kh uravnenij ot parametra, Ukr. mat. zhurn., 14, № 3, 289 – 298 (1962).

A. Yu. Levin, Predel`ny`j perekhod dlya nesingulyarny`kh sistem $X = A_n(t)X$, Dokl. AN SSSR, 176, № 4, 774 – 777 (1967).

A. Yu. Levin, Voprosy` teorii oby`knovennogo linejnogo differenczial`nogo uravneniya, Vestn. Yaroslav. un-ta, № 5, 105 – 132 (1973).

Z. Opial, Continuous parameter dependence in linear systems of differential equations, J. Different. Equat., 3, № 4, 571 – 579 (1967), https://doi.org/10.1016/0022-0396(67)90017-4 DOI: https://doi.org/10.1016/0022-0396(67)90017-4

W. T. Reid, Some limit theorems for ordinary differential systems, J. Different. Equat., 3, № 3, 423 – 439 (1967), https://doi.org/10.1016/0022-0396(67)90042-3 DOI: https://doi.org/10.1016/0022-0396(67)90042-3

Nguen Tkhe Khoan, O zavisimosti ot parametra reshenij linejnoj sistemy` differenczial`ny`kh uravnenij, Differencz. uravneniya, 29, № 6, 970 – 975 (1993).

I. T. Kiguradze, Некоторые сингулярные краевые задачи для обыкновенных дифференциальных уравнений. (Russian) [[Some singular boundary value problems for ordinary differential equations]] Izdat. Tbilis. Univ., Tbilisi, 1975. 352 pp. (1975).

I. T. Kiguradze, Kraevy`e zadachi dlya sistem oby`knovenny`kh differenczial`ny`kh uravnenij, Itogi nauki i tekhniki. Sovr. probl. matematiki. Novejshie dostizheniya, 30, 3 – 103 (1987).

M. Ashordia, Criteria of correctness of linear boundary value problems for systems of generalized ordinary differential equations, Czechословак Math. J., 46, № 3, 385 – 404 (1996). DOI: https://doi.org/10.21136/CMJ.1996.127304

V. A. Mikhajlecz, O. B. Pelekhata, N. V. Reva, O teoreme Kiguradze dlya linejny`kh kraevy`kh zadach, Dop. NAN Ukrayini, № 12, 8 – 13 (2017).

V. A. Mikhailets, O. B. Pelekhata, N. V. Reva, Limit theorems for the solutions of boundary-value problems>, Ukr. Math. J., 70, № 2, 243 – 251 (2018), https://doi.org/10.1007/s11253-018-1498-8 DOI: https://doi.org/10.1007/s11253-018-1498-8

E. Hnyp, V. A. Mikhailets, A. A. Murach, Parameter-dependent one-dimensional boundary-value problems in Sobolev spaces, Electron. J. Different. Equat., № 81, 1 – 13 (2017).

V. A. Mikhailets, A. A. Murach, V. Soldatov, Continuity in a parameter of solutions to generic boundary-value problems, Electron. J. Qual. Theory Different. Equat., № 87, 1 – 16 (2016), https://doi.org/10.14232/ejqtde.2016.1.87 DOI: https://doi.org/10.14232/ejqtde.2016.1.87

E. V. Gnyp, T. I. Kodlyuk, V. A. Mikhailets, Fredholm boundary-value problems with parameter in Sobolev spaces, Ukr. Math. J., 67, № 5, 658 – 667 (2015), https://doi.org/10.1007/s11253-015-1105-1 DOI: https://doi.org/10.1007/s11253-015-1105-1

T. Kodlyuk, V. Mikhailets, Solutions of one-dimensional boundary-value problems with a parameter in Sobolev spaces>, J. Math. Sci., 190, № 4, 589 – 599 (2013), https://doi.org/10.1007/s10958-013-1272-2 DOI: https://doi.org/10.1007/s10958-013-1272-2

O. M. Atlasiuk, V. A. Mikhailets, Fredholm one-dimensional boundary-value problems in Sobolev spaces, Ukr. Math. J., 70, № 10, 1526 – 1537 (2019). DOI: https://doi.org/10.1007/s11253-019-01588-w

O. M. Atlasiuk, V. A. Mikhailets, Fredholm one-dimensional boundary-value problems with parameter in Sobolev spaces, Ukr. Math. J., 70, № 11, 1677 – 1687 (2019). DOI: https://doi.org/10.1007/s11253-019-01599-7

V. G. Maz`ya, Mul`tiplikatory` v prostranstvakh differencziruemy`kh funkczij, Izd-vo Leningr. un-ta, Leningrad (1986).

L. D. Kudryavczev, S. M. Nikol`skij, Prostranstva differencziruemy`kh funkczij mnogikh peremenny`kh i teoremy` vlozheniya, Sovr. problemy` matematiki. Fundam. napravleniya, 26, 5 – 157 (1988)

Kh. Tribel`, Teoriya interpolyaczii, funkczional`ny`e prostranstva, differenczial`ny`e operatory`, Mir, Moskva (1980).

V. A. Trenogin, Funkczional`ny`j analiz, Nauka, Moskva (1980).

E. V. Gnip, Continuity with respect to the parameter of the solutions of one-dimensional boundary-value problems in Slobodetskii spaces>, Ukr. Math. J., 68, № 6, 49 – 861 (2016), https://doi.org/10.1007/s11253-016-1261-y DOI: https://doi.org/10.1007/s11253-016-1261-y

Published
20.07.2021
How to Cite
Mikhailets, V. A., and T. B. Skorobohach. “Fredholm Boundary-Value Problem in Sobolev – Slobodetsky Spaces”. Ukrains’kyi Matematychnyi Zhurnal, Vol. 73, no. 7, July 2021, pp. 920 -30, doi:10.37863/umzh.v73i7.6684.
Section
Research articles