Autonomous nonlinear boundary-value problems for the Lyapunov equation in Hilbert space

  • D. S. Bihun Iн-т математики НАН України, Київ
  • O. O Pokutnyi Institute of Mathamatics NAS of Ukraine
  • E. V. Panasenko Zaporizhia National University
Keywords: .

Abstract

UDC 517.9

We investigate boundary value problems for the Lyapunov equation in the Hilbert space in the case where the corresponding problem is defined on an interval that depends on a parameter $\varepsilon$. We obtain necessary and sufficient conditions for the existence of generalized solutions of the problem.

References

D. Dragicevic, C. Preda, Lyapunov theorems for exponential dichotomies in Hilbert spaces, Int. J. Math., 27, № 4, Article 1650033 (2016), 13 p., https://doi.org/10.1142/S0129167X16500336 DOI: https://doi.org/10.1142/S0129167X16500336

Vu Ngoc Phat, Tran Tin Kiet, On the Lyapunov equation in Banach spaces and applications to control problems, Int. J. Math. and Math. Sci., 29, № 3, 155 – 166 (2000), https://doi.org/10.1155/S0161171202010840 DOI: https://doi.org/10.1155/S0161171202010840

C. Preda, P. Preda, Lyapunov operator inequalities for exponential stability of Banach space semigroups of operators, Appl. Math. Lett., 25, 401 – 403 (2012), https://doi.org/10.1016/j.aml.2011.09.022 DOI: https://doi.org/10.1016/j.aml.2011.09.022

M. Gil’, Solution estimates for the discrete Lyapunov equation in a Hilbert space and applications to difference equations, Axioms, 8, № 1 (2019), 22 p. DOI: https://doi.org/10.3390/axioms8010020

L. Jodar, An algorithm for solving generalized algebraic Lyapunov equations in Hilbert space, applications to boundary value problems, Proc. Edinburgh Math. Soc., 31, 99 – 105 (1988), https://doi.org/10.1017/S0013091500006611 DOI: https://doi.org/10.1017/S0013091500006611

Y. Latushkin, S. Montgomery-Smith, Lyapunov theorems for Banach spaces, Bull. Amer. Math. Soc., 31, № 1, 44 – 49 (1994), https://doi.org/10.1090/S0273-0979-1994-00495-1 DOI: https://doi.org/10.1090/S0273-0979-1994-00495-1

P. Gahinet, M. Sorine, A. J. Laub, C. Kenney, Stability margins and Lyapunov equations for linear operators in Hilbert space, Proc. 29th Conf. Decision and Control, 2638 – 2639 (1990). DOI: https://doi.org/10.1109/CDC.1990.203444

K. M. Przyluski, The Lyapunov equation and the problem of stability for linear bounded discrete-time systems in Hilbert space, Appl. Math. and Optim., 6, 97 – 112 (1980), https://doi.org/10.1007/BF01442886 DOI: https://doi.org/10.1007/BF01442886

R. P. Ivanov, I. L. Raykov, Parametric Lyapunov function method for solving nonlinear systems in Hilbert spaces, Numer. Funct. Anal. and Optim., 17, 893 – 901 (1996), https://doi.org/10.1080/01630569608816732 DOI: https://doi.org/10.1080/01630569608816732

A. Polyakov, On homogeneous Lyapunov function theorem for evolution equations, IFAC 2020 — Int. Federation Automatic Control, 21st World Congress, July 2020, Berlin / Virtual, Germany.

A. Pazy, On the applicability of Lyapunov’s theorem in Hilbert space, SIAM J. Math. Anal., 3, № 2, 291 – 294 (1972), https://doi.org/10.1137/0503028 DOI: https://doi.org/10.1137/0503028

M. Gil’, Stability of linear equations with differentiable operators in a Hilbert space, IMA J. Math. Control and Inform., 37, №. 1, 19 – 26 (2020), https://doi.org/10.1093/imamci/dny035 DOI: https://doi.org/10.1093/imamci/dny035

S. G. Krejn, Linejny`e uravneniya v banakhovom prostranstve, Nauka, Moskva (1971).

A. A. Bojchuk, A. A. Pokutnij, Teoriya vozmushhenij operatorny`kh uravnenij v prostranstvakh Freshe i Gil`berta, Ukr. mat. zhurn.,67, № 9, 1181 – 1188 (2015).

Ye. V. Panasenko, O. O. Pokutnij, Umova bifurkacziyi rozv'yazkiv rivnyannya Lyapunova u prostori Gil`berta, Nelinijni kolivannya, 20, № 3, 373 – 390 (2017).

Ye. V. Panasenko, O. O. Pokutnij, Nelinijni krajovi zadachi dlya rivnyannya Lyapunova u prostori $L_p$ , Nelinijni kolivannya, 21, № 4, 523 – 536 (2018).

V. A. Trenogin, Funkczional`ny`j analiz, Nauka, Moskva (1980).

E. Deutch, Semi-inverses, reflexive semi-inverses, and pseudoinverses of an arbitrary linear transformation, Linear Algebra and Appl., 4, 313 – 322 (1971), https://doi.org/10.1016/0024-3795(71)90002-4 DOI: https://doi.org/10.1016/0024-3795(71)90002-4

A. A. Bojchuk, V. F. Zhuravlev, A. M. Samojlenko, Obobshhenno-obratny`e operatory` i neterovy` kraevy`e zadachi, In-t matematiki NAN Ukrainy`, Kiev (1995).

A. A. Boichuk, A. M. Samoilenko, Generalized inverse operators and Fredholm boundary-value problems, De Gruyter, Berlin (2016), https://doi.org/10.1515/9783110378443 DOI: https://doi.org/10.1515/9783110378443

A. N. Tikhonov, V. Ya. Arsenin, Методы решения некорректных задач. (Russian) [[Methods for the solution of ill-posed problems]] Third edition. ``Nauka'', Moscow (1979).

Published
20.07.2021
How to Cite
BihunD. S., PokutnyiO. O., and PanasenkoE. V. “Autonomous Nonlinear Boundary-Value Problems for the Lyapunov Equation in Hilbert Space”. Ukrains’kyi Matematychnyi Zhurnal, Vol. 73, no. 7, July 2021, pp. 867 -8, doi:10.37863/umzh.v73i7.6691.
Section
Research articles