Bounded solutions of a difference equation in Banach space with input data in subspaces
Abstract
UDC 517.929.2
We study the problem of existence and uniqueness of a bounded solution to a difference equation of the first order with a constant operator coefficient in a Banach space. For the case where the initial condition and input sequence are in some subspaces, necessary and sufficient conditions are obtained. These results are applied to difference equations with a jump of operator coefficient and difference equations of higher orders.
References
I. V. Gaishun, Stability of two-parameter discrete systems with commuting operators, Different. Equat., 32, № 2, 219 –227 (1996).
M. F. Horodnii, O. A. Lahoda, Obmezhenist rozviazkiv dvoparametrychnoho riznytsevoho rivniannia u banakhovomu prostori, Visn. Kyiv. nats. un-tu im. T. Shevchenka. Ser. fiz.-mat. nauky, № 3, 94 – 98 (1999).
Yu. V. Tomilov, Asymptotychna povedinka odniiei rekurentnoi poslidovnosti v banakhovomu prostori, Asymptotychne intehruvannia neliniinykh rivnian,146 – 153 (1992).
D. Henry, Geometric theory of semilinear parabolic equations, Springer, Berlin (1981). DOI: https://doi.org/10.1007/BFb0089647
F. Riesz, B. Szokefalvi-Nagy, Functional analysis, Dover Publ., New York (1990).
I. V. Honchar, Pro obmezheni rozviazky riznytsevoho rivniannia zi strybkom operatornoho koefitsiienta, Visn. Kyiv. nats. un-tu im. T. Shevchenka. Ser. fiz.-mat. nauky, № 2, 25 – 28 (2016).
M. F. Horodnii, I. V. Honchar, Pro obmezheni rozviazky riznytsevoho rivniannia zi zminnym operatornym koefitsiientom, Dop. NAN Ukrainy, № 12, 12 – 16 (2016).
R. V. Kadison, J. R. Ringrose, Fundamentals of the theory of operator algebras, vol. I, Elementary Theory, Amer. Math. Soc. (1997), https://doi.org/10.1090/gsm/015 DOI: https://doi.org/10.1090/gsm/015
Copyright (c) 2021 Andriy Chaikovs'kyi
This work is licensed under a Creative Commons Attribution 4.0 International License.