Weighted damping of external and initial disturbances in descriptor control systems
Abstract
UDC 517.925.51; 681.5.03
We investigate the problem of $H_{∞}$ -control of a generalized type for a class of linear descriptor systems and suggest a criterion and sufficient conditions for the existence of control laws ensuring that the closed-loop system is regular, stable and impulse-free with a desired estimate for the weighted damping level of external and initial disturbances. The main computational procedures for the synthesis of regulators are reduced to solving linear and quadratic matrix inequalities that have no rank constraints. An example of robust stabilization of a hydraulic system with three tanks is given.
References
S. Boyd, L. El. Ghaoui, E. Feron, V. Balakrishman, Linear matrix inequalities in system and control theory, SIAM Stud. Appl. Math., 15 (1994), https://doi.org/10.1137/1.9781611970777 DOI: https://doi.org/10.1137/1.9781611970777
P. Gahinet, P. Apkarian, A linear matrix inequality approach to $H_{∞}$ control, Intern. J. Robust and Nonlinear Control, 4, 421 – 448 (1994), https://doi.org/10.1002/rnc.4590040403 DOI: https://doi.org/10.1002/rnc.4590040403
G. E. Dullerud, F. G. Paganini, A course in robust control theory. A convex approach, Springer-Verlag, Berlin, ISBN 978-1-4757-3290-0 (2000).
B. T. Poliak, P. S. Shcherbakov, Robastnaia ustoichyvost y upravlenye, Nauka, Moskva (2002).
D. V. Balandyn, M. M. Kohan, Syntez zakonov upravlenyia na osnove lyneinykh matrychnykh neravenstv, Fyzmatlyt, Moskva (2007).
B. T. Poliak, M. V. Khlebnykov, P. S. Shcherbakov, Upravlenye lyneinymy systemamy pry vneshnykh vozmushchenyiakh. Tekhnyka lyneinykh matrychnykh neravenstv, Lenand, Moskva (2014).
V. M. Kuntsevych, Otsenky vozdeistvyia ohranychennykh vozmushchenyi na nelyneinye dyskretnye systemy y ykh mynymyzatsyia, Avtomatyka y telemekhanyka, № 9, 25 – 44 (2019).
A. H. Mazko, Robastnaia ustoichyvost y stabylyzatsyia dynamycheskykh system. Metody matrychnykh y konusnykh neravenstv, Pr. In-tu matematyky NAN Ukrainy,102, (2016).
D. V. Balandyn, M. M. Kohan, Obobshchennoe $H_{∞}$ -optymalnoe upravlenye kak kompromyss mezhdu $H_{∞}$ -optymalnym y $γ$-optymalnym upravlenyiamy, Avtomatyka y telemekhanyka, № 6, 20 – 38 (2010).
Z. Feng, J. Lam, S. Xu, S. Zhou, $H_{∞}$ control with transients for singular systems, Asian J. Control, 18, № 3, 817 – 827 (2016), https://doi.org/10.1002/asjc.1163 DOI: https://doi.org/10.1002/asjc.1163
S. Campbell, A. Ilchmann, V. Mehrmann, T. Reis (Eds.), Applications of differential-algebraic equations: examples and benchmarks, Differential-Algebraic Equations Forum, Switzerland AG, Springer Nature, ISBN 978-3-030-03718-5 (2019). DOI: https://doi.org/10.1007/978-3-030-03718-5
A. Ilchmann, T. Reis (Eds.), Surveys in differential-algebraic equations, III, Differential-Algebraic Equations Forum, Springer Intern. Publ. Switzerland (2015), https://doi.org/10.1007/978-3-319-22428-2 DOI: https://doi.org/10.1007/978-3-319-22428-2
Guang-Ren Duan, Analysis and design of descriptor linear systems, Springer, New York, etc. (2010), https://doi.org/10.1007/978-1-4419-6397-0 DOI: https://doi.org/10.1007/978-1-4419-6397-0_3
R. Riaza, Differential-algebraic systems. Analytical aspects and circuit applications, World Sci., Singapore (2008), https://doi.org/10.1142/6746 DOI: https://doi.org/10.1142/6746
L. Dai, Singular control systems, Springer, New York (1989), https://doi.org/10.1007/BFb0002475 DOI: https://doi.org/10.1007/BFb0002475
A. A. Belov, A. P. Kurdiukov, Deskryptornыe systemы y zadachy upravlenyia, Fyzmatlyt, Moskva (2015).
A. M. Samoilenko, M. I. Shkil, V. P. Yakovets, Liniini systemy dyferentsialnykh rivnian z vyrodzhenniamy, Vyshcha shk., Kyiv (2000).
A. A. Boichuk, A. A. Pokutnyi, V. F. Chistyakov, Application of perturbation theory to the solvability analysis of differential algebraic equations, Comput. Math. and Math. Phys., 53, № 6, 777 – 788 (2013), https://doi.org/10.1134/S0965542513060043 DOI: https://doi.org/10.1134/S0965542513060043
S. Xu, J. Lam, Y. Zou, New versions of bounded real lemmas for continuous and discrete uncertain systems, Circuits, Systems and Signal Process, 26, 829 – 838 (2007), https://doi.org/10.1007/s00034-007-9000-0 DOI: https://doi.org/10.1007/s00034-007-9000-0
M. Chadli, P. Shi, Z. Feng, J. Lam, New bounded real lemma formulation and $H_{∞}$ control for continuous-time descriptor systems, Asian J. Control, 20, № 1, 1 – 7 (2018), https://doi.org/10.1002/asjc.1606 DOI: https://doi.org/10.1002/asjc.1606
F. Gao, W. Q. Liu, V. Sreeram, K. L. Teo , Bounded real lemma for descriptor systems and its application, IFAC 14th Triennial World Congress, Beijing, P. R., China, (1999), p. 1631 – 1636, https://doi.org/10.1016/s1474-6670(17)56277-1 DOI: https://doi.org/10.1016/S1474-6670(17)56277-1
I. Masubushi, Y. Kamitane, A. Ohara, N. Suda, $H_{∞}$ control for descriptor Systems: a matrix inequalities approach, Automatica., 33, № 4, 669 – 673 (1997), https://doi.org/10.1016/S0005-1098(96)00193-8 DOI: https://doi.org/10.1016/S0005-1098(96)00193-8
O. H. Mazko, Otsinka zvazhenoho rivnia hasinnia obmezhenykh zburen u deskryptornykh systemakh, Ukr. mat. zhurn., № 11, 1541 – 1552 (2018).
Yu Feng, Mohamed Yagoubi, Robust control of linear descriptor systems, Springer Nature Singapore Pte Ltd. (2017), https://doi.org/10.1007/978-981-10-3677-4 DOI: https://doi.org/10.1007/978-981-10-3677-4
Masaki Inoue, Teruyo Wada, Masao Ikeda, Eiho Uezato, Robust state-space $H_{∞}$ controller design for descriptor systems, Automatica, 59, 164 – 170 (2015), https://doi.org/10.1016/j.automatica.2015.06.021 DOI: https://doi.org/10.1016/j.automatica.2015.06.021
O. H. Mazko, T. O. Kotov, Robastna stabilizatsiia i zvazhene hasinnia obmezhenykh zburen u deskryptornykh systemakh keruvannia, Ukr. mat. zhurn., 71, № 10, 1374 – 1388 (2019).
O. H. Mazko, Zvazhena otsinka i ponyzhennia rivnia vplyvu obmezhenykh zburen u deskryptornykh systemakh keruvannia, Ukr. mat. zhurn., 72, № 11, 1510 – 1523 (2020). DOI: https://doi.org/10.37863/umzh.v72i11.2389
F. R. Hantmakher, Teoryia matryts, Nauka, Moskva (1988).
O. H. Mazko, S. M. Kusii, Zvazhene hasinnia obmezhenykh zburen u systemi keruvannia litaka v rezhymi posadky, Zb. prats In-tu matematyky NAN Ukrainy, 15, № 1, 88 – 99 (2018).
O. H. Mazko, T. O. Kotov, Stabilizatsiia i hasinnia obmezhenykh zburen u deskryptornykh systemakh keruvannia, Zb. prats In-tu matematyky NAN Ukrainy, 15, № 1, 65 – 87 (2018).
J. M. Araujo, P. R. Barros, C. E. T. Dorea, Design of observers with error limitation in discrete-time descriptor systems: a case study of a hydraulic tank system, IEEE Trans. Control Syst. Technol, 20, № 4, 1041 – 1047 (2012). DOI: https://doi.org/10.1109/TCST.2011.2159719
Copyright (c) 2021 Олексій Григорович Мазко
This work is licensed under a Creative Commons Attribution 4.0 International License.