Systems of complex variable polynomials related to classical systems of orthogonal polynomials
Abstract
UDC 517.586+517.538.3
We investigate the properties of systems of complex variable polynomials represented as the contour integrals with kernel functions analytic at infinity.
Conditions for existence of functions associated with these polynomials and sufficient conditions of expansion of analytic functions into series in these polynomials are established.
Expansions of functions into series in classical orthogonal polynomials in a complex domain, integral representations for such polynomials, dependencies of monomials $z^n$ of these polynomials, and other relations can be obtained as the corollaries implied by our results.
References
A. I. Markushevich, Izbrannyie glavyi teorii analiticheskih funktsiy, Nauka, Moskva(1976).
S. Pashkovskiy, Vyichislitelnyie primeneniya mnogochlenov i ryadov Chebyishova, Nauka, Moskva (1983).
G. Polia, G.Sege, Problems and theorems in analysis. Part One, Nauka, Moscow (1978).
A. P. Prudnikov, Yu. A. Bryichkov, O. I. Marichev, Integralyi i ryadyi. Elementarnyie funktsii, Nauka, Moscow (1981).
G.Sege, Ortogonalnyie mnogochlenyi, Fizmatgiz, Moskva (1962).
M. A. Suhorolskiy, Rozvinennya funktsiy za sistemoyu polinomiv, biortogonalnih na zamknenomu konturi z sistemoyu regulyarnih u neskinchenno viddaleniy tochtsi funktsiy, Ukr. mat. zhurn., 62, № 2, 238 – 254 (2010).
M. A. Sukhorolskyi, Nablyzhennia funktsii polinomamy Lezhandra v kompleksnii ploshchyni , Visn. Nats. un-tu „Lviv. politekhnika”, № 643, 3 – 14 (2009).
M. A. Sukhorolskyi, V. V. Dostoina, Rozklad analitychnykh v kruzi funktsii v kompleksnii oblasti za systemoiu pokhidnykh mnohochleniv Lezhandra, Visn. Nats. un-tu „Lviv. politekhnika”, № 687, 105 – 121 (2010).
M. A. Sukhorolskyi, V. V. Dostoina, O. V. Veselovska, Mnohochleny, sporidneni z mnohochlenamy Chebyshova, Prykl. problemy mekhaniky i matematyky, 15, 35 – 41 (2017).
M. A. Sukhorolskyi, V. V. Dostoina, O. V. Veselovska, Systema funktsii, biortohonalna z mnohochlenamy, sporidnenymy z mnohochlenamy Chebyshova, Visn. Kyiv. nats. yn–tu im. T. Shevchenka. Matematyka, mekhanika, № 1, 53 – 59 (2018).
O. V. Veselovska, V. V. Dostoina, A system of functions biorthogonal with the derivatives of Chebyshev second-kind polynomials of a complex variable, J. Math. Sci., 249, № 5, 785 – 803 (2020). DOI: https://doi.org/10.1007/s10958-020-04973-0
Copyright (c) 2021 Михайло Сухорольський, Вероніка Достойна
This work is licensed under a Creative Commons Attribution 4.0 International License.