Structure of integrals of equations of oscillations of a conical shell closed at a vertex

  • V. A. Trotsenko Institute of Mathematics of the National Academy of Sciences of Ukraine, Kiev
  • Yu. V. Trotsenko Institute of Mathematics of the National Academy of Sciences of Ukraine, Kiev

Abstract

We consider a system of differential equations, which describes the free oscillations of a thin-walled conical shell of rotation with a vertex. Based on the analytical theory of systems of differential equations with a small parameter at the highest derivative and equations with a regular singular point, we establish the formal structure of regular integrals of the original equations.

Author Biography

Yu. V. Trotsenko , Institute of Mathematics of the National Academy of Sciences of Ukraine, Kiev
 

References

A. G. Aslanyan, V. B. Lidskij, Raspredelenie sobstvennyh chastot tonkih uprugih obolochek, Nauka, Moskva (1974).

B. Vazov, Asimptoticheskie razlozheniya reshenij obyknovennyh differencial'nyh uravnenij, Mir, Moskva(1968).

M. I. Vishik, L. A. Lyusternik, Regulyarnoe vyrozhdenie i pogranichnyj sloj dlya linejnyh differencial'nyh uravnenij s malym parametrom, Uspekhi mat. nauk, 1957, 12, vyp. 5(77), 3 – 122 (1957).

G. I. Pshenichnov, Malye svobodnye kolebaniya uprugih obolochek vrashcheniya, Inzh. zhurn., 5, vyp. 4, 685 – 690 (1965).

A. L. Gol'denvejzer, V. B. Lidskij, P. E. Tovstik, Svobodnye kolebaniya tonkih uprugih obolochek, Nauka, Moskva (1979).

A. B. Vasil'eva, V. F. Butuzov, Asimptoticheskie razlozheniya reshenij singulyarno vozmushchennyh uravnenij, Nauka, Moskva (1973)

Published
17.10.2021
How to Cite
Trotsenko , V. A., and Y. V. Trotsenko. “Structure of Integrals of Equations of Oscillations of a Conical Shell Closed at a Vertex”. Ukrains’kyi Matematychnyi Zhurnal, Vol. 73, no. 10, Oct. 2021, pp. 1414-22, doi:10.37863/umzh.v73i10.6702.
Section
Research articles