Structure of integrals of equations of oscillations of a conical shell closed at a vertex

Authors

  • V. A. Trotsenko Institute of Mathematics of the National Academy of Sciences of Ukraine, Kiev
  • Yu. V. Trotsenko Institute of Mathematics of the National Academy of Sciences of Ukraine, Kiev

DOI:

https://doi.org/10.37863/umzh.v73i10.6702

Keywords:

варіаційні метроди, сингулярно збурені крайові задачі, тонкостінні оболонки обертання

Abstract

We consider a system of differential equations, which describes the free oscillations of a thin-walled conical shell of rotation with a vertex. Based on the analytical theory of systems of differential equations with a small parameter at the highest derivative and equations with a regular singular point, we establish the formal structure of regular integrals of the original equations.

Author Biography

  • Yu. V. Trotsenko , Institute of Mathematics of the National Academy of Sciences of Ukraine, Kiev
     

References

A. G. Aslanyan, V. B. Lidskij, Raspredelenie sobstvennyh chastot tonkih uprugih obolochek, Nauka, Moskva (1974).

B. Vazov, Asimptoticheskie razlozheniya reshenij obyknovennyh differencial'nyh uravnenij, Mir, Moskva(1968).

M. I. Vishik, L. A. Lyusternik, Regulyarnoe vyrozhdenie i pogranichnyj sloj dlya linejnyh differencial'nyh uravnenij s malym parametrom, Uspekhi mat. nauk, 1957, 12, vyp. 5(77), 3 – 122 (1957).

G. I. Pshenichnov, Malye svobodnye kolebaniya uprugih obolochek vrashcheniya, Inzh. zhurn., 5, vyp. 4, 685 – 690 (1965).

A. L. Gol'denvejzer, V. B. Lidskij, P. E. Tovstik, Svobodnye kolebaniya tonkih uprugih obolochek, Nauka, Moskva (1979).

A. B. Vasil'eva, V. F. Butuzov, Asimptoticheskie razlozheniya reshenij singulyarno vozmushchennyh uravnenij, Nauka, Moskva (1973)

Published

17.10.2021

Issue

Section

Research articles

How to Cite

Trotsenko , V. A., and Yu. V. Trotsenko. “Structure of Integrals of Equations of Oscillations of a Conical Shell Closed at a Vertex”. Ukrains’kyi Matematychnyi Zhurnal, vol. 73, no. 10, Oct. 2021, pp. 1414-22, https://doi.org/10.37863/umzh.v73i10.6702.