On some relationships between the generalized central series of Leibniz algebras

Authors

  • О. О. Pypka Oles Honchar Dnipropetrovsk National University, Dnipro, Ukraine

DOI:

https://doi.org/10.37863/umzh.v73i12.6739

Keywords:

Leibniz algebra, Lie algebra, Schur's theorem, Baer's theorem, Hegarty's theorem, D-center, D-derived subalgebra, upper (lower) D-central series

Abstract

UDC 512.554

The purpose of this article is to show a close relationship between the generalized central series of Leibniz algebras. Some analogues of the classical group-theoretical theorems by Schur and Baer for Leibniz algebras are proved.

References

R. Baer, Endlichkeitskriterien f¨ur Kommutatorgruppen, Math. Ann., 124, 161 – 177 (1952); DOI:10.1007/BF01343558. DOI: https://doi.org/10.1007/BF01343558

A. Blokh, On a generalization of the concept of Lie algebra, Dokl. Akad. Nauk SSSR, 165, № 3, 471 – 473 (1965) (in Russian).

V. A. Chupordia, A. A. Pypka, N. N. Semko, V. S. Yashchuk, Leibniz algebras: a brief review of current results, Carpathian Math. Publ., 11, № 2, 250 – 257 (2019); DOI:10.15330/cmp.11.2.250-257. DOI: https://doi.org/10.15330/cmp.11.2.250-257

M. R. Dixon, L. A. Kurdachenko, A. A. Pypka, On some variants of theorems of Schur and Baer, Milan J. Math., 82, № 2, 233 – 241 (2014); DOI:10.1007/s00032-014-0215-9. DOI: https://doi.org/10.1007/s00032-014-0215-9

M. R. Dixon, L. A. Kurdachenko, A. A. Pypka, The theorems of Schur and Baer: a survey, Int. J. Group Theory, 4, № 1, 21 – 32 (2015); DOI:10.22108/ IJGT.2015.7376.

P. Hegarty, The absolute centre of a group, J. Algebra, 169, 929 – 935 (1994); DOI:10.1006/jabr.1994.1318. DOI: https://doi.org/10.1006/jabr.1994.1318

V. V. Kirichenko, L. A. Kurdachenko, A. A. Pypka, I. Ya. Subbotin, Some aspects of Leibniz algebra theory, Algebra and Discrete Math., 24, № 1, 1 – 33 (2017).

L. A. Kurdachenko, J. Otal, A. A. Pypka, Relationships between the factors of the canonical central series of Leibniz algebras, Eur. J. Math., 2, № 2, 565 – 577 (2016); DOI:10.1007/s40879-016-0093-5. DOI: https://doi.org/10.1007/s40879-016-0093-5

L. A. Kurdachenko, N. N. Semko, I. Ya. Subbotin, Applying group theory philosophy to Leibniz algebras: some new developments, Adv. Group Theory and Appl., 9, 71 – 121 (2020); DOI:10.32037/agta-2020-004.

L. A. Kurdachenko, I. Ya. Subbotin, A brief history of an important classical theorem, Adv. Group Theory and Appl., 2, 121 – 124 (2016); doi:10.4399/97888548970148.

J.-L. Loday, Une version non commutative des alg`ebres de Lie: les alg`ebras de Leibniz, Enseign. Math., 39, 269 – 293 (1993).

B. H. Neumann, Groups with finite classes of conjugate elements, Proc. London Math. Soc. (3), 1, № 1, 178 – 187 (1951); DOI:10.1112/plms/s3-1.1.178. DOI: https://doi.org/10.1112/plms/s3-1.1.178

I. N. Stewart, Verbal and marginal properties of non-associative algebras, Proc. Lond. Math. Soc. (3), 28, № 1, 129 – 140 (1974); DOI:10.1112/plms/s3-28.1.129. DOI: https://doi.org/10.1112/plms/s3-28.1.129

E. Stitzinger, R. Turner, Concerning derivations of Lie algebras, Linear and Multilinear Algebra, 45, № 4, 329 – 331 (1999); DOI:10.1080/03081089908818596. DOI: https://doi.org/10.1080/03081089908818596

M. R. Vaughan-Lee, Metabelian BFC p-groups, J. Lond. Math. Soc. (2), 5, № 4, 673 – 680 (1972); DOI:10.1112/jlms/s2 – 5.4.673. DOI: https://doi.org/10.1112/jlms/s2-5.4.673

B. A. F. Wehrfritz, Schur’s theorem and Wiegold’s bound, J. Algebra, 504, 440 – 444 (2018); DOI:10.1016/j.jalgebra.2018.02.023. DOI: https://doi.org/10.1016/j.jalgebra.2018.02.023

J. Wiegold, Multiplicators and groups with finite central factor-groups, Math. Z., 89, № 4, 345 – 347 (1965); DOI:10.1007/BF01112166. DOI: https://doi.org/10.1007/BF01112166

Published

17.12.2021

Issue

Section

Research articles

How to Cite

Pypka О. О. “On Some Relationships Between the Generalized Central Series of Leibniz Algebras”. Ukrains’kyi Matematychnyi Zhurnal, vol. 73, no. 12, Dec. 2021, pp. 1691-7, https://doi.org/10.37863/umzh.v73i12.6739.