Some commutativity criteria for prime rings with involution involving symmetric and skew symmetric elements
Abstract
UDC 512.5
We study the Posner second theorem [Proc. Amer. Math. Soc., 8, 1093–1100 (1957)] and strong com\-mu\-ta\-tivity preserving problem for symmetric and skew symmetric elements involving generalized derivations on prime rings with involution. The obtained results cover numerous known theorems. We also provide examples showing that the obtained results hold neither in the case of involution of the first kind, nor in the case where the ring is not prime.
References
A. Alahmadi, H. Alhazmi, S. Ali, N. A. Dar, A. N. Khan, Additive maps on prime and semiprime rings with involution, Hacet. J. Math. and Stat., 49, № 3, 1126–1133 (2020). DOI: https://doi.org/10.15672/hujms.661178
S. Ali, N. A. Dar, On $*$-centralizing mappings in rings with involution, Georgian Math. J., 21, № 1, 25–28 (2014). DOI: https://doi.org/10.1515/gmj-2014-0006
S. Ali, N. A. Dar, A. N. Khan, On strong commutativity preserving like maps in rings with involution, Miskolc Math. Notes, 16, № 1, 17–24 (2015). DOI: https://doi.org/10.18514/MMN.2015.1297
H. E. Bell, M. N. Daif, On commutativity and strong commutativity preserving maps, Canad. Math. Bull., 37, 443–447 (1994). DOI: https://doi.org/10.4153/CMB-1994-064-x
H. E. Bell, M. N. Daif, On derivations and commutativity in prime rings, Acta Math. Hungar., 66, 337–343 (1995). DOI: https://doi.org/10.1007/BF01876049
H. E. Bell, W. S. Martindale III, Centralizing mappings of semiprime rings, Canad. Math. Bull., 30, № 1, 92–101 (1987). DOI: https://doi.org/10.4153/CMB-1987-014-x
H. E. Bell, G. Mason, On derivations in near rings and rings, Math. J. Okayama Univ., 34, 135–144 (1992).
M. Brev sar, On the distance of the composition of two derivations to the generalized derivations, Glasgow Math. J., 33, 89–93 (1991). DOI: https://doi.org/10.1017/S0017089500008077
M. Brev sar, Commuting traces of biadditive mappings, commutativity preserving mappings and Lie mappings, Trans. Amer. Math. Soc., 335, 525–546 (1993). DOI: https://doi.org/10.1090/S0002-9947-1993-1069746-X
M. Brev{s}ar, C. R. Miers, Strong commutativity preserving mappings of semiprime rings, Canad. Math. Bull., 37, 457–460 (1994). DOI: https://doi.org/10.4153/CMB-1994-066-4
N. A. Dar, N. A. Khan, Generalized derivations in rings with involution, Algebra Colloq., 24, № 3, 393–399 (2017). DOI: https://doi.org/10.1142/S1005386717000244
Q. Deng, M. Ashraf, On strong commutativity preserving maps, Results Math., 30, 259–263 (1996). DOI: https://doi.org/10.1007/BF03322194
T. K. Lee, T. L. Wong, Nonadditive strong commutativity preserving maps, Comm. Algebra, 40, 2213–2218 (2012). DOI: https://doi.org/10.1080/00927872.2011.578287
P. K. Liau, C. K. Liu, Strong commutativity preserving generalized derivations on Lie ideals, Linear and Multilinear Algebra, 59, 905–915 (2011). DOI: https://doi.org/10.1080/03081087.2010.535819
J. S. Lin, C. K. Liu, Strong commutativity preserving maps on Lie ideals, Linear Algebra and Appl., 428, 1601–1609 (2008). DOI: https://doi.org/10.1016/j.laa.2007.10.006
J. S. Lin, C. K. Liu, Strong commutativity preserving maps in prime rings with involution, Linear Algebra and Appl., 432, 14–23 (2010). DOI: https://doi.org/10.1016/j.laa.2009.06.036
C. K. Liu, Strong commutativity preserving generalized derivations on right ideals, Monatsh. Math., 166, 453–465 (2012). DOI: https://doi.org/10.1007/s00605-010-0281-1
J. Ma, X. W. Xu, F. W. Niu, Strong commutativity preserving generalized derivations on semiprime rings, Acta Math. Sin. Engl. Ser., 24, 1835–1842 (2008). DOI: https://doi.org/10.1007/s10114-008-7445-0
B. Nejjar, A. Kacha, A. Mamouni, L.Oukhtite, Commutativity theorems in rings with involution, Comm. Algebra, 45, № 2, 698–708 (2017). DOI: https://doi.org/10.1080/00927872.2016.1172629
E. C. Posner, Derivations in prime rings, Proc. Amer. Math. Soc., 8, 1093–1100 (1957). DOI: https://doi.org/10.1090/S0002-9939-1957-0095863-0
X. Qi, J. Hou, Strong commutativity preserving maps on triangular rings, Oper. Matrices, 6, 147–158 (2012). DOI: https://doi.org/10.7153/oam-06-10
P. Semrl, Commutativity preserving maps, Linear Algebra and Appl., 429, 1051–1070 (2008). DOI: https://doi.org/10.1016/j.laa.2007.05.006
O. A. Zemzami, L. Oukhtite, S. Ali, N. Muthana, On certain classes of generalized derivations, Math. Slovaca, 69, № 5, 1023–1032 (2019). DOI: https://doi.org/10.1515/ms-2017-0286
Copyright (c) 2023 Nadeem Ahmad Dar, SHAKIR ALI, Adnan Abbasi, Mohammad Ayedh
This work is licensed under a Creative Commons Attribution 4.0 International License.