# Sharp Remez type inequalities estimating the $L_q$ -norm of a function via its $L_p$ -norm

• V. A. Kofanov Oles Honchar Dnipro National University
• T. V. Olexandrova Oles Honchar Dnipro National University
Keywords: Remez type inequalities, Inequalities of various metrics, Sobolev classes, polynomials splines

### Abstract

UDC 517.5 For any $q\geq p>0,$ $\alpha=(r+1/q)/(r+1/p),$ $f_p\in[0,\infty],$ $\beta\in[0,2\pi),$ we prove the sharp Remez type inequality $$\|x\|_q\leq\frac{\|\varphi_r+c\|_q}{\|\varphi_r+ c\|^{\alpha}_{L_p([0,2\pi]\setminus B_{y(\beta)})}}\|x\|^{\alpha}_{L_p([0,2\pi]\setminus B)}\|x^{(r)}\|^{1-\alpha}_\infty$$ for $2\pi$-periodic functions $x\in L_\infty^r$ that have zeros and satisfy the condition \begin{gather}\|x_+\|_p\,\|x_-\|^{-1}_p=f_p,\quad (1)\end{gather} where $\varphi_r$ is Euler's perfect spline of order $r;$ the number $c$ is chosen in such a way that the function $x=\varphi_r+c$ satisfies the condition (1); $B$ is an arbitrary measurable set such that $\mu B\leq\beta\left(\|\varphi_r+c\|_p\left\|x^{(r)}\right\|_\infty\|x\|^{-1}_p\right)^{-1/(r+1/p)},$ the set $B_{y(\beta)}$ is defined by $B_{y(\beta)}:=\{t\in[0,2\pi]\colon|\varphi_r(t)+c|>y(\beta)\},$ and moreover, $\mu B_{y(\beta)}=\beta.$

We also establish sharp Remez type inequalities of various metrics for trigonometric polynomials and for polynomial splines satisfying (1).

### References

V. F. Babenko, V. A. Kofanov, S. A. Pichugov, Comparison of rearrangements and Kolmogorov – Nagy type inequalities for periodic functions, Approximation Theory: A volume dedicated to Blagovest Sendov (B. Bojanov, Ed.), Darba, Sofia (2002), p. 24 – 53.

V. A. Kofanov, O nekotoryh ekstremal'nyh zadachah raznyh metrik dlya differenciruemyh funkcij na osi, Ukr. mat. zhurn., 61, № 6, 765 – 776 (2009).

V. A. Kofanov, Neravenstva raznyh metrik dlya differenciruemyh periodicheskih funkcij, Ukr. mat. zhurn., 67, № 2, 207 – 212 (2015).

B. Bojanov, N. Naidenov, An extension of the Landau – Kolmogorov inequality. Solution of a problem of Erdos, J. Anal. Math., 78, 263 – 280 (1999), https://doi.org/10.1007/BF02791137 DOI: https://doi.org/10.1007/BF02791137

V. A. Kofanov, Tochnye verhnie grani norm funkcij i ih proizvodnyh na klassah funkcij s zadannoj funkciej sravneniya, Ukr. mat. zhurn., 63, № 7, 969 – 984 (2011).

E. Remes, Sur une propriete еxtremale des polynomes de Tchebychef, Зап. Наук.-дослiд. iн-ту математики й механiки та Харкiв. мат. т-ва, сер. 4, 13, вип. 1, 93 – 95 (1936).

M. I. Ganzburg, On a Remez-type inequality for trigonometric polynomials, J. Approx. Theory, 164, 1233 – 1237 (2012), https://doi.org/10.1016/j.jat.2012.05.006 DOI: https://doi.org/10.1016/j.jat.2012.05.006

E. Nursultanov, S. Tikhonov, A sharp Remez inequality for trigonometric polynomials, Constr. Approx., 38, 101 – 132 (2013), https://doi.org/10.1007/s00365-012-9172-0 DOI: https://doi.org/10.1007/s00365-012-9172-0

P. Borwein, T. Erdelyi, Polynomials and polynomial inequalities, Springer, New York (1995), DOI: https://doi.org/10.1007/978-1-4612-0793-1

M. I. Ganzburg, Polynomial inequalities on measurable sets and their applications, Consr. Approx., 17, 275 – 306 (2001), https://doi.org/10.1007/s003650010020 DOI: https://doi.org/10.1007/s003650010020

S. Tikhonov, P. Yuditski, Sharp Remez inequality // https://www.researchgate.net/publication/327905401.

V. A. Kofanov, Tochnye neravenstva tipa Remeza dlya differenciruemyh periodicheskih funkcij, polinomov i splajnov, Ukr. mat. zhurn., 68, № 2, 227 – 240 (2016).

V. A. Kofanov, Tochnye neravenstva raznyh metrik tipa Remeza dlya differenciruemyh periodicheskih funkcij, polinomov i splajnov, Ukr. mat. zhurn., 69, № 2, 173 – 188 (2017).

A. E. Gajdabura, V. A. Kofanov, Tochnye neravenstva raznyh metrik tipa Remeza na klassah funkcij s zadannoj funkciej sravneniya, Ukr. mat. zhurn., 69, № 11, 1472 – 1485 (2017).

В. А. Кофанов, Точные неравенства типа Колмогорова – Ремеза для периодических функций малой гладкости, Укр. мат. журн., 72, № 2, 483 – 493 (2020) https://doi.org/10.37863/umzh.v72i4.963 DOI: https://doi.org/10.37863/umzh.v72i4.963

В. А. Кофанов, И. В. Попович, Точные неравенства разных метрик типа Ремеза с несимметричными ограничениями на функции, Укр. мат. журн., 72, № 7, 918 – 927 (2020), https://doi.org/10.37863/umzh.v72i7.2352 DOI: https://doi.org/10.37863/umzh.v72i7.2352

В. О. Кофанов, Про взаємозв’язок точних нерiвностей типу Колмогорова та Колмогорова – Ремеза, Укр. мат. журн., 73, № 4, 506 – 514 (2021), https://doi.org/10.37863/umzh.v73i4.6310 DOI: https://doi.org/10.37863/umzh.v73i4.6310

V. F. Babenko, V. A. Kofanov, S. A. Pichugov, Sravnenie tochnyh konstant v neravenstvah dlya proizvodnyh na dejstvitel'noj osi i na okruzhnosti, Ukr. mat. zhurn., 55, № 5, 579 – 589 (2003).

N. P. Kornejchuk, V. F. Babenko, A. A. Ligun, Ekstremal'nye svojstva polinomov i splajnov, Nauk. dumka, Kiev (1992).

A. N. Kolmogorov, O neravenstvah mezhdu verhnimi granyami posledovatel'nyh proizvodnyh funkcii na beskonechnom intervale, Izbr. trudy. Matematika, mekhanika, Nauka, Moskva , s. 252 – 263. (1985).

N. P. Kornejchuk, V. F. Babenko, V. A. Kofanov, S. A. Pichugov, Neravenstva dlya proizvodnyh i ih prilozheniya, Nauk. dumka, Kiev (2003).

V. M.Tihomirov, Poperechniki mnozhestv v funkcional'nyh prostranstvah i teoriya nailuchshih priblizhenij, Uspekhi mat. nauk., 15, № 3, 81 – 120 (1960).

Published
17.06.2022
How to Cite
KofanovV. A., and OlexandrovaT. V. “Sharp Remez Type Inequalities Estimating the $L_q$ -Norm of a Function via Its $L_p$ -Norm”. Ukrains’kyi Matematychnyi Zhurnal, Vol. 74, no. 5, June 2022, pp. 635 - 649, doi:10.37863/umzh.v74i5.6836.
Issue
Section
Research articles