Sharp Remez type inequalities estimating the Lq -norm of a function via its Lp -norm

Authors

  • V. A. Kofanov Oles Honchar Dnipro National University
  • T. V. Olexandrova Oles Honchar Dnipro National University

DOI:

https://doi.org/10.37863/umzh.v74i5.6836

Keywords:

Remez type inequalities, Inequalities of various metrics, Sobolev classes, polynomials splines

Abstract

UDC 517.5 For any qp>0, α=(r+1/q)/(r+1/p), fp[0,], β[0,2π), we prove the sharp Remez type inequality xqφr+cqφr+cαLp([0,2π]By(β))xαLp([0,2π]B)x(r)1α for 2π-periodic functions xLr that have zeros and satisfy the condition x+px1p=fp,(1) where φr is Euler's perfect spline of order r; the number c is chosen in such a way that the function x=φr+c satisfies the condition (1); B is an arbitrary measurable set such that μBβ(φr+cpx(r)x1p)1/(r+1/p), the set By(β) is defined by By(β):={t[0,2π]:|φr(t)+c|>y(β)}, and moreover, μBy(β)=β.

We also establish sharp Remez type inequalities of various metrics for trigonometric polynomials and for polynomial splines satisfying (1).

References

V. F. Babenko, V. A. Kofanov, S. A. Pichugov, Comparison of rearrangements and Kolmogorov – Nagy type inequalities for periodic functions, Approximation Theory: A volume dedicated to Blagovest Sendov (B. Bojanov, Ed.), Darba, Sofia (2002), p. 24 – 53.

V. A. Kofanov, O nekotoryh ekstremal'nyh zadachah raznyh metrik dlya differenciruemyh funkcij na osi, Ukr. mat. zhurn., 61, № 6, 765 – 776 (2009).

V. A. Kofanov, Neravenstva raznyh metrik dlya differenciruemyh periodicheskih funkcij, Ukr. mat. zhurn., 67, № 2, 207 – 212 (2015).

B. Bojanov, N. Naidenov, An extension of the Landau – Kolmogorov inequality. Solution of a problem of Erdos, J. Anal. Math., 78, 263 – 280 (1999), https://doi.org/10.1007/BF02791137 DOI: https://doi.org/10.1007/BF02791137

V. A. Kofanov, Tochnye verhnie grani norm funkcij i ih proizvodnyh na klassah funkcij s zadannoj funkciej sravneniya, Ukr. mat. zhurn., 63, № 7, 969 – 984 (2011).

E. Remes, Sur une propriete еxtremale des polynomes de Tchebychef, Зап. Наук.-дослiд. iн-ту математики й механiки та Харкiв. мат. т-ва, сер. 4, 13, вип. 1, 93 – 95 (1936).

M. I. Ganzburg, On a Remez-type inequality for trigonometric polynomials, J. Approx. Theory, 164, 1233 – 1237 (2012), https://doi.org/10.1016/j.jat.2012.05.006 DOI: https://doi.org/10.1016/j.jat.2012.05.006

E. Nursultanov, S. Tikhonov, A sharp Remez inequality for trigonometric polynomials, Constr. Approx., 38, 101 – 132 (2013), https://doi.org/10.1007/s00365-012-9172-0 DOI: https://doi.org/10.1007/s00365-012-9172-0

P. Borwein, T. Erdelyi, Polynomials and polynomial inequalities, Springer, New York (1995), DOI: https://doi.org/10.1007/978-1-4612-0793-1

M. I. Ganzburg, Polynomial inequalities on measurable sets and their applications, Consr. Approx., 17, 275 – 306 (2001), https://doi.org/10.1007/s003650010020 DOI: https://doi.org/10.1007/s003650010020

S. Tikhonov, P. Yuditski, Sharp Remez inequality // https://www.researchgate.net/publication/327905401.

V. A. Kofanov, Tochnye neravenstva tipa Remeza dlya differenciruemyh periodicheskih funkcij, polinomov i splajnov, Ukr. mat. zhurn., 68, № 2, 227 – 240 (2016).

V. A. Kofanov, Tochnye neravenstva raznyh metrik tipa Remeza dlya differenciruemyh periodicheskih funkcij, polinomov i splajnov, Ukr. mat. zhurn., 69, № 2, 173 – 188 (2017).

A. E. Gajdabura, V. A. Kofanov, Tochnye neravenstva raznyh metrik tipa Remeza na klassah funkcij s zadannoj funkciej sravneniya, Ukr. mat. zhurn., 69, № 11, 1472 – 1485 (2017).

В. А. Кофанов, Точные неравенства типа Колмогорова – Ремеза для периодических функций малой гладкости, Укр. мат. журн., 72, № 2, 483 – 493 (2020) https://doi.org/10.37863/umzh.v72i4.963 DOI: https://doi.org/10.37863/umzh.v72i4.963

В. А. Кофанов, И. В. Попович, Точные неравенства разных метрик типа Ремеза с несимметричными ограничениями на функции, Укр. мат. журн., 72, № 7, 918 – 927 (2020), https://doi.org/10.37863/umzh.v72i7.2352 DOI: https://doi.org/10.37863/umzh.v72i7.2352

В. О. Кофанов, Про взаємозв’язок точних нерiвностей типу Колмогорова та Колмогорова – Ремеза, Укр. мат. журн., 73, № 4, 506 – 514 (2021), https://doi.org/10.37863/umzh.v73i4.6310 DOI: https://doi.org/10.37863/umzh.v73i4.6310

V. F. Babenko, V. A. Kofanov, S. A. Pichugov, Sravnenie tochnyh konstant v neravenstvah dlya proizvodnyh na dejstvitel'noj osi i na okruzhnosti, Ukr. mat. zhurn., 55, № 5, 579 – 589 (2003).

N. P. Kornejchuk, V. F. Babenko, A. A. Ligun, Ekstremal'nye svojstva polinomov i splajnov, Nauk. dumka, Kiev (1992).

A. N. Kolmogorov, O neravenstvah mezhdu verhnimi granyami posledovatel'nyh proizvodnyh funkcii na beskonechnom intervale, Izbr. trudy. Matematika, mekhanika, Nauka, Moskva , s. 252 – 263. (1985).

N. P. Kornejchuk, V. F. Babenko, V. A. Kofanov, S. A. Pichugov, Neravenstva dlya proizvodnyh i ih prilozheniya, Nauk. dumka, Kiev (2003).

V. M.Tihomirov, Poperechniki mnozhestv v funkcional'nyh prostranstvah i teoriya nailuchshih priblizhenij, Uspekhi mat. nauk., 15, № 3, 81 – 120 (1960).

Published

17.06.2022

Issue

Section

Research articles

How to Cite

Kofanov, V. A., and T. V. Olexandrova. “Sharp Remez Type Inequalities Estimating the Lq -Norm of a Function via Its Lp -Norm”. Ukrains’kyi Matematychnyi Zhurnal, vol. 74, no. 5, June 2022, pp. 635 - 649, https://doi.org/10.37863/umzh.v74i5.6836.