Sharp Remez type inequalities estimating the $L_q$ -norm of a function via its $L_p$ -norm

  • V. A. Kofanov Oles Honchar Dnipro National University
  • T. V. Olexandrova Oles Honchar Dnipro National University
Keywords: Remez type inequalities, Inequalities of various metrics, Sobolev classes, polynomials splines

Abstract

UDC 517.5 For any $q\geq p>0,$ $\alpha=(r+1/q)/(r+1/p),$ $f_p\in[0,\infty],$ $\beta\in[0,2\pi),$ we prove the sharp Remez type inequality $$\|x\|_q\leq\frac{\|\varphi_r+c\|_q}{\|\varphi_r+ c\|^{\alpha}_{L_p([0,2\pi]\setminus B_{y(\beta)})}}\|x\|^{\alpha}_{L_p([0,2\pi]\setminus B)}\|x^{(r)}\|^{1-\alpha}_\infty$$ for $2\pi$-periodic functions $x\in L_\infty^r$ that have zeros and satisfy the condition \begin{gather}\|x_+\|_p\,\|x_-\|^{-1}_p=f_p,\quad (1)\end{gather} where $\varphi_r$ is Euler's perfect spline of order $r;$ the number $c$ is chosen in such a way that the function $x=\varphi_r+c$ satisfies the condition (1); $B$ is an arbitrary measurable set such that $\mu B\leq\beta\left(\|\varphi_r+c\|_p\left\|x^{(r)}\right\|_\infty\|x\|^{-1}_p\right)^{-1/(r+1/p)},$ the set $B_{y(\beta)}$ is defined by $B_{y(\beta)}:=\{t\in[0,2\pi]\colon|\varphi_r(t)+c|>y(\beta)\},$ and moreover, $\mu B_{y(\beta)}=\beta.$

We also establish sharp Remez type inequalities of various metrics for trigonometric polynomials and for polynomial splines satisfying (1).

References

V. F. Babenko, V. A. Kofanov, S. A. Pichugov, Comparison of rearrangements and Kolmogorov – Nagy type inequalities for periodic functions, Approximation Theory: A volume dedicated to Blagovest Sendov (B. Bojanov, Ed.), Darba, Sofia (2002), p. 24 – 53.

V. A. Kofanov, O nekotoryh ekstremal'nyh zadachah raznyh metrik dlya differenciruemyh funkcij na osi, Ukr. mat. zhurn., 61, № 6, 765 – 776 (2009).

V. A. Kofanov, Neravenstva raznyh metrik dlya differenciruemyh periodicheskih funkcij, Ukr. mat. zhurn., 67, № 2, 207 – 212 (2015).

B. Bojanov, N. Naidenov, An extension of the Landau – Kolmogorov inequality. Solution of a problem of Erdos, J. Anal. Math., 78, 263 – 280 (1999), https://doi.org/10.1007/BF02791137 DOI: https://doi.org/10.1007/BF02791137

V. A. Kofanov, Tochnye verhnie grani norm funkcij i ih proizvodnyh na klassah funkcij s zadannoj funkciej sravneniya, Ukr. mat. zhurn., 63, № 7, 969 – 984 (2011).

E. Remes, Sur une propriete еxtremale des polynomes de Tchebychef, Зап. Наук.-дослiд. iн-ту математики й механiки та Харкiв. мат. т-ва, сер. 4, 13, вип. 1, 93 – 95 (1936).

M. I. Ganzburg, On a Remez-type inequality for trigonometric polynomials, J. Approx. Theory, 164, 1233 – 1237 (2012), https://doi.org/10.1016/j.jat.2012.05.006 DOI: https://doi.org/10.1016/j.jat.2012.05.006

E. Nursultanov, S. Tikhonov, A sharp Remez inequality for trigonometric polynomials, Constr. Approx., 38, 101 – 132 (2013), https://doi.org/10.1007/s00365-012-9172-0 DOI: https://doi.org/10.1007/s00365-012-9172-0

P. Borwein, T. Erdelyi, Polynomials and polynomial inequalities, Springer, New York (1995), DOI: https://doi.org/10.1007/978-1-4612-0793-1

M. I. Ganzburg, Polynomial inequalities on measurable sets and their applications, Consr. Approx., 17, 275 – 306 (2001), https://doi.org/10.1007/s003650010020 DOI: https://doi.org/10.1007/s003650010020

S. Tikhonov, P. Yuditski, Sharp Remez inequality // https://www.researchgate.net/publication/327905401.

V. A. Kofanov, Tochnye neravenstva tipa Remeza dlya differenciruemyh periodicheskih funkcij, polinomov i splajnov, Ukr. mat. zhurn., 68, № 2, 227 – 240 (2016).

V. A. Kofanov, Tochnye neravenstva raznyh metrik tipa Remeza dlya differenciruemyh periodicheskih funkcij, polinomov i splajnov, Ukr. mat. zhurn., 69, № 2, 173 – 188 (2017).

A. E. Gajdabura, V. A. Kofanov, Tochnye neravenstva raznyh metrik tipa Remeza na klassah funkcij s zadannoj funkciej sravneniya, Ukr. mat. zhurn., 69, № 11, 1472 – 1485 (2017).

В. А. Кофанов, Точные неравенства типа Колмогорова – Ремеза для периодических функций малой гладкости, Укр. мат. журн., 72, № 2, 483 – 493 (2020) https://doi.org/10.37863/umzh.v72i4.963 DOI: https://doi.org/10.37863/umzh.v72i4.963

В. А. Кофанов, И. В. Попович, Точные неравенства разных метрик типа Ремеза с несимметричными ограничениями на функции, Укр. мат. журн., 72, № 7, 918 – 927 (2020), https://doi.org/10.37863/umzh.v72i7.2352 DOI: https://doi.org/10.37863/umzh.v72i7.2352

В. О. Кофанов, Про взаємозв’язок точних нерiвностей типу Колмогорова та Колмогорова – Ремеза, Укр. мат. журн., 73, № 4, 506 – 514 (2021), https://doi.org/10.37863/umzh.v73i4.6310 DOI: https://doi.org/10.37863/umzh.v73i4.6310

V. F. Babenko, V. A. Kofanov, S. A. Pichugov, Sravnenie tochnyh konstant v neravenstvah dlya proizvodnyh na dejstvitel'noj osi i na okruzhnosti, Ukr. mat. zhurn., 55, № 5, 579 – 589 (2003).

N. P. Kornejchuk, V. F. Babenko, A. A. Ligun, Ekstremal'nye svojstva polinomov i splajnov, Nauk. dumka, Kiev (1992).

A. N. Kolmogorov, O neravenstvah mezhdu verhnimi granyami posledovatel'nyh proizvodnyh funkcii na beskonechnom intervale, Izbr. trudy. Matematika, mekhanika, Nauka, Moskva , s. 252 – 263. (1985).

N. P. Kornejchuk, V. F. Babenko, V. A. Kofanov, S. A. Pichugov, Neravenstva dlya proizvodnyh i ih prilozheniya, Nauk. dumka, Kiev (2003).

V. M.Tihomirov, Poperechniki mnozhestv v funkcional'nyh prostranstvah i teoriya nailuchshih priblizhenij, Uspekhi mat. nauk., 15, № 3, 81 – 120 (1960).

Published
17.06.2022
How to Cite
Kofanov, V. A., and T. V. Olexandrova. “Sharp Remez Type Inequalities Estimating the $L_q$ -Norm of a Function via Its $L_p$ -Norm”. Ukrains’kyi Matematychnyi Zhurnal, Vol. 74, no. 5, June 2022, pp. 635 - 649, doi:10.37863/umzh.v74i5.6836.
Section
Research articles