On mean Cartan torsion of Finsler metrics
Abstract
UDC 514.7
We prove that Finsler manifolds with unbounded mean Cartan torsion cannot be isometrically imbedded into any Minkowski space. We also study the generalized Randers metrics obtained by the Rizza structure and show that any generalized Randers metric has an unbounded mean Cartan torsion. Then generalized Randers metrics cannot be isometrically imbedded into any Minkowski space. Further, we prove that every generalized Randers metric is quasi-C-reducible. Finally, we show that every generalized Randers metric on 2-dimensional Finsler manifold has a vanishing mean Cartan torsion.
References
M. Atashafrouz, B. Najafi, A. Tayebi, Weakly Douglas–Finsler metrics, Period. Math. Hungar., 81, 194–200 (2020). DOI: https://doi.org/10.1007/s10998-020-00335-0
B Bidabad, M. Y. Ahmadi, On complete Finslerian–Yamabe solitons, Different. Geom. and Appl., 66, 52–60 (2019). DOI: https://doi.org/10.1016/j.difgeo.2019.05.006
B. Bidabad, M. K. Sedaghat, Ricci flow on Finsler surfaces, J. Geom. and Phys., 129, 238–254 (2018). DOI: https://doi.org/10.1016/j.geomphys.2018.02.019
D. Burago, S. Ivanov, Isometric embedding of Finsler manifolds, Algebra i Analiz, 5, 179–192 (1993).
E. Cartan, Les espaces de Finsler, Actualités, 79, Hermann, Paris (1934).
A. Deicke, Über die Finsler–Raume mit $A_i=0$, Arch. Math., 4, 45–51 (1953). DOI: https://doi.org/10.1007/BF01899750
C. Ehresmann, Sur la théorie des espaces fibrés, Colloq. Intern. Centre Nat. Rech. Sci., № 12, 3–15 (1949).
P. Finsler, Über Kurven und Flächen in allgemeinen Räumen, Diss., Göttingen, 1918, Birkhäuser-Verlag, Basel (1951). DOI: https://doi.org/10.1007/978-3-0348-4144-3
H. Hopf, Zur Topologie der komplexen Mannigfaltigkeiten, Studies and Essays Presentedto R. Courant on his 60th Birthday, 167–185 (1948).
Y. Ichijyõ, Finsler metrics on almost complex manifolds, Riv. Mat. Univ. Parma, 4, 1–28 (1988).
Y. Ichijyõ, M. Hashiguchi, On $(a, b, f)$-metrics, Rep. Fac. Sci. Kagoshima Univ. (Math., Phys., Chem.), 28, 1–9 (1995).
Y. Ichijyõ, M. Hashiguchi, On $(a, b, f)$-metrics II, Rep. Fac. Sci. Kagoshima Univ. (Math., Phys., Chem.), 29, 1–5 (1995).
R. S. Ingarden, Über die Einbetting eines Finslerschen Rammes in einan Minkowskischen Raum, Bull. Acad. Polon. Sci., 2, 305–308 (1954).
N. Lee, On the special Finsler metrics, Bull. Korean Math. Soc., 40, 457–464 (2003). DOI: https://doi.org/10.4134/BKMS.2003.40.3.457
J. Nash, The immedding problem for Riemannian manifolds, Ann. Math., 73, 20–37 (1957). DOI: https://doi.org/10.2307/1969989
T. Rajabi, On the norm of Cartan torsion of two classes of $(alpha, beta)$-metrics, J. Finsler Geom. and Appl., 1, № 1, 66–72 (2020).
Z. Shen, Differential geometry of spray and Finsler space, Kluwer Acad. Publ. (2001). DOI: https://doi.org/10.1007/978-94-015-9727-2
Z. Shen, On Finsler geometry of submanifolds, Math. Ann., 311, 549–576 (1998). DOI: https://doi.org/10.1007/s002080050200
A. Tayebi, On 4-th root Finsler metrics of isotropic scalar curvature, Math. Slovaca, 70, 161–172 (2020). DOI: https://doi.org/10.1515/ms-2017-0341
A. Tayebi, On generalized 4-th root metrics of isotropic scalar curvature, Math. Slovaca, 68, 907–928 (2018). DOI: https://doi.org/10.1515/ms-2017-0154
A. Tayebi, M. Barzegari, Generalized Berwald spaces with $(alpha, beta)$-metrics, Indag. Math., 27, 670–683 (2016). DOI: https://doi.org/10.1016/j.indag.2016.01.002
A. Tayebi, B. Najafi, Classification of 3-dimensional Landsbergian $(alpha, beta)$-mertrics, Publ. Math. Debrecen, 96, 45–62 (2020). DOI: https://doi.org/10.5486/PMD.2020.8453
A. Tayebi, B. Najafi, The weakly generalized unicorns in Finsler geometry, Sci. China Math. (2021); https://; DOI: https://doi.org/10.1007/s11425-020-1853-5
doi.org/10.1007/s11425-020-1853-5.
A. Tayebi, M. Razgordani, On conformally flat fourth root $(alpha, beta)$-metrics, Different. Geom. and Appl., 62, 253–266 (2019). DOI: https://doi.org/10.1016/j.difgeo.2018.12.002
A. Tayebi, M. Razgordani, Four families of projectively flat Finsler metrics with $K=1$ and their non-Riemannian curvature properties, Rev. R. Acad. Cienc. Exactas F'{i}s. Nat. Ser. A. Math. RACSAM, 112, 1463–1485 (2018). DOI: https://doi.org/10.1007/s13398-017-0443-2
A. Tayebi, H. Sadeghi, On Cartan torsion of Finsler metrics, Publ. Math. Debrecen, 82, № 2, 461–471 (2013). DOI: https://doi.org/10.5486/PMD.2013.5379
A. Tayebi, H. Sadeghi, On generalized Douglas–Weyl $(alpha, beta)$-metrics, Acta Math. Sin. (Engl. Ser.), 31, № 10, 1611–1620 (2015). DOI: https://doi.org/10.1007/s10114-015-3418-2
A. Tayebi, H. Sadeghi, Generalized P-reducible $(alpha, beta)$-metrics with vanishing $S$-curvature, Ann. Polon. Math., 114, № 1, 67–79 (2015). DOI: https://doi.org/10.4064/ap114-1-5
A. Tayebi, M. Shahbazi Nia, A new class of projectively flat Finsler metrics with constant flag curvature $K=1$, Different. Geom. and Appl., 41, 123–133 (2015). DOI: https://doi.org/10.1016/j.difgeo.2015.05.003
A. Tayebi, T. Tabatabeifar, Unicorn metrics with almost vanishing $H$- and Ξ-curvatures, Turkish J. Math., 41, 998–1008 (2017). DOI: https://doi.org/10.3906/mat-1606-35
H. Whitney, Differentiable manifolds, Ann. Math., 37, 645–680 (1936). DOI: https://doi.org/10.2307/1968482
Copyright (c) 2023 Akbar Dehghan Nezhad, Sareh Beizavi
This work is licensed under a Creative Commons Attribution 4.0 International License.