Topological and geometric properties of the set of 1-nonconvexity points of a weakly 1-convex set in the plane
Abstract
UDC 514.172
In the present work, we consider a class of generalized convex sets in the real plane known as weakly $1$-convex sets.
For a set in the real Euclidean space $\mathbb{R}^n,$ $n\ge 2,$ it is said that a point of the complement of this set to the whole space $\mathbb{R}^n$ is an $\boldsymbol m$-nonconvexity point of the set, $m=\overline{1,n-1},$ if any $m$-dimensional plane passing through this point intersects the set.
An open set in the space $\mathbb{R}^n,$ $n\ge 2,$ is called to be weakly $\boldsymbol m$-convex, $m=\overline{1,n-1},$ if its boundary contains no $m$-nonconvexity points of the set.
Moreover, in the class of open, weakly $1$-convex sets in the plane, we distinguish a subclass of ones with a finite number of connected components and nonempty set of $1$-nonconvexity points.
In this paper, we investigate mainly the properties of the set of $1$-nonconvexity points for the sets from this subclass.
In particular, for any set in this subclass, we prove that the set of its $1$-nonconvexity points is open;
any connected component of the set of its $1$-nonconvexity points is the interior of a convex polygon;
for any convex polygon, there exists a set in this subclass such that its set of $1$-nonconvexity points coincides with the interior of the polygon.
References
L. A. Aizenberh, O razlozhenyy holomorfnykh funktsyi mnohykh kompleksnykh peremennykh na prosteishye droby, Syb. mat. zhurn., 8, № 5, 1124 – 1142 (1967).
Yu. B. Zelynskyi, Mnohoznachnye otobrazhenyia v analyze, Nauk. dumka, Kyev (1993).
K. Leĭkhtveĭs, Выпуклые множества. (Russian) [[Convex sets]] Translated from the German by V. A. Zalgaller and T. V. Khachaturova. ``Nauka'', Moscow, (1985).
B. A. Rozenfelʹd, Многомерные пространства. (Russian) [[Multidimensional spaces]] Izdat. ``Nauka'', Moscow (1966).
A. Y. Herasyn, Ob $(n - 1)$-vypuklykh mnozhestvakh, Nekotorye voprosy analyza y dyfferentsyalnoi topolohyy, Yn-t matematyky AN USSR, Kyev (1988), s. 8 – 14.
A. Y. Herasyn, Obozrymost $(n - 1)$-vypuklykh mnozhestv, Kompleksnyi analyz, alhebra y topolohyia, Yn-t matematyky AN USSR, Kyev (1990), s. 20 – 28.
Kh. K. Dakkhil, Yu. B. Zelinskyi, B. A. Klishchuk, Pro slabko m-opukli mnozhyny, Dop. NAN Ukrainy, № 4, 3 – 6 (2017).
Yu. B. Zelynskyi, Y. V. Momot, O $(n,m)$-vypuklykh mnozhestvakh, Ukr. mat. zhurn., 53, № 3, 422 – 427 (2001).
Yu. B. Zelynskyi, Y. Yu. Vyhovskaia, M. V. Stefanchuk, Obobshchenno vypuklye mnozhestva y zadacha o teny, Ukr. mat. zhurn., 67, № 12, 1658 – 1666 (2015).
Yu. B. Zelynskyi, Obobshchenno vypuklye obolochky mnozhestv y zadacha o teny, Ukr. mat. visn., 12, № 2, 278 – 289 (2015).
Yu. B. Zelinskyi, Variatsii do zadachi pro „tin”, Zb. prats In-tu matematyky NAN Ukrainy, 14, № 1, 163 – 170 (2017).
V. L. Melnyk, Topolohichna klasyfikatsiia (n 1)-opuklykh mnozhyn, Ukr. mat. zhurn., 50, № 9, 1236 – 1243 (1998).
T. M. Osipchuk, Topolohichni vlastyvosti slabko m-opuklykh mnozhyn, Pratsi In-tu prykl. matematyky i mekhaniky NAN Ukrainy, 34, 75 – 84 (2020).
M. V. Stefanchuk, Uzahalneno opukli mnozhyny ta yikh zastosuvannia, Dys. . . . kand. fiz.-mat. nauk, Kyiv (2016).
Kh. K. Dakkhil, Zadachi pro tin ta vidobrazhennia postiinoi kratnosti, Dys. . . . kand. fiz.-mat. nauk, Kyiv (2017).
H. Khudaiberhanov, Ob odnoi zadache Hrauerta, Dokl. AN UzSSR, № 3, 7 – 8 (1975).
H. Khudaiberhanov, Ob odnorodno-polynomyalno vypukloi obolochke obedynenyia sharov, Dep. v VYNYTY, № 1772-85 Dep.
Copyright (c) 2021 Тетяна Осіпчук
This work is licensed under a Creative Commons Attribution 4.0 International License.