Nonexistence results for a system of nonlinear fractional integro-differential equations
Abstract
UDC 517.9
We investigate the nonexistence of (nontrivial) global solutions for a system of nonlinear fractional equations. Each equation involves $n$ fractional derivatives, a subfirst-order ordinary derivative, and a nonlinear source term. The fractional derivatives are of the Caputo type of order between $0$ and $1.$ The nonlinear sources have the form of the convolution of a function of state with (possibly singular) kernel. We generalize the results available in the literature, in particular, the results obtained by Mennouni and Youkana [Electron. J. Different. Equat., 152, 1–15 (2017)] and Ahmad and Tatar [Turkish J. Math., 43, 2715–2730 (2019)].
References
A. Aghajani, Y. Jalilian, J. J. Trujillo, On the existence of solutions of fractional integro-differential equations, Fract. Calc. Appl. and Anal., 15, № 1, 44–69 (2012). DOI: https://doi.org/10.2478/s13540-012-0005-4
A. M. Ahmad, N.-E. Tatar, Nonexistence of global solutions for a fractional system of strongly coupled integro-differential equations, Turkish J. Math., 43, 2715–2730 (2019). DOI: https://doi.org/10.3906/mat-1901-73
A. M. Ahmad, K. M. Furati , N.-E. Tatar, On the nonexistence of global solutions for a class of fractional integro-differential problems, Adv. Different. Equat., № 1 (2017). DOI: https://doi.org/10.1186/s13662-017-1105-6
A. Alsaedi, B. Ahmad, M. Kirane, F. Al Musalhi, F. Alzahrani, Blowing-up solutions for a nonlinear time-fractional system, Bull. Math. Sci., 7, № 2, 201–210 (2017). DOI: https://doi.org/10.1007/s13373-016-0087-0
Z. Bai, Y. Chen, H. Lian, S. Sun, On the existence of blow up solutions for a class of fractional differential equations, Fract. Calc. and Appl. Anal., 17, № 4, 1175–1187 (2014). DOI: https://doi.org/10.2478/s13540-014-0220-2
J. Deng, L. Ma, Existence and uniqueness of solutions of initial value problems for nonlinear fractional differential equations, Appl. Math. Lett., 23, Issue 6, 676–680 (2010). DOI: https://doi.org/10.1016/j.aml.2010.02.007
J. Henderson, R. Luca, Nonexistence of positive solutions for a system of coupled fractional boundary value problems, Bound. Value Probl., 2015, № 1 (2015). DOI: https://doi.org/10.1186/s13661-015-0403-8
K. Furati, M. Kirane, Necessary conditions for the existence of global solutions to systems of fractional differential equations, Fract. Calc. and Appl. Anal., 11, 281–298 (2008).
J. Jiang, L. Liu, Existence of solutions for a sequential fractional differential system with coupled boundary conditions},
Bound. Value Probl., 2016, № 1 (2016).
M. Jleli, B. Samet, Nonexistence results for some classes of nonlinear fractional differential inequalities, J. Funct. Spaces, 2020, Article ID 8814785 (2020). DOI: https://doi.org/10.1155/2020/8814785
A. Kadem, M. Kirane, C. M. Kirk, W. E. Olmstead, Blowing-up solutions to systems of fractional differential and integral equations with exponential non-linearities, IMA J. Appl. Math., 79, № 6, 1077–1088 (2014). DOI: https://doi.org/10.1093/imamat/hxt005
A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential equations, Elsevier B. V., Amsterdam, Netherlands (2006).
M. Kirane, B. Ahmad, A. Alsaedi, M. Al-Yami, Non-existence of global solutions to a system of fractional diffusion equations, Acta Appl. Math., 133, № 1, 235–248 (2014). DOI: https://doi.org/10.1007/s10440-014-9865-4
M. Kirane, M. Medved, N. E. Tatar, On the nonexistence of blowing-up solutions to a fractional functional differential equations, Georgian Math. J., 19, 127–144 (2012). DOI: https://doi.org/10.1515/gmj-2012-0006
M. Kirane, S. A. Malik, The profile of blowing-up solutions to a nonlinear system of fractional differential equations, Nonlinear Anal., 73, № 12, 3723–3736 (2010). DOI: https://doi.org/10.1016/j.na.2010.06.088
Y. Laskri, N.-E. Tatar, The critical exponent for an ordinary fractional differential problem, Comput. Math. Appl., 59, № 3, 1266–1270 (2010). DOI: https://doi.org/10.1016/j.camwa.2009.06.031
A. Mennouni, A. Youkana, Finite time blow-up of solutions for a nonlinear system of fractional differential equations, Electron. J. Different. Equat., 152, 1–15 (2017).
E. Mitidieri, S. I. Pohozaev, A priori estimates and blow-up of solutions to nonlinear partial differential equations and inequalities, Proc. Steklov Inst. Math., 234, 1–383 (2001).
S. G. Samko, A. A. Kilbas, O. I. Marichev, Fractional integrals and derivatives: theory and applications, Gordon and Breach (1987).
Copyright (c) 2023 Ahmad M Ahmad
This work is licensed under a Creative Commons Attribution 4.0 International License.