$\sigma$-Centralizers of triangular algebras

  • M. Ashraf Department of Mathematics, Aligarh Muslim University, India
  • M. A. Ansari Department of Mathematics, Aligarh Muslim University, India
Keywords: Triangular algebra; $\sigma$-centralizer; Lie $\sigma$-centralizer; Jordan $\sigma$-centralizer.

Abstract

UDC 512.5

In this paper, we characterize Lie (Jordan) $\sigma$-centralizers of  triangular algebras. More precisely, we prove that, under certain conditions, every Lie $\sigma$-centralizer of a triangular algebra can be represented as the sum of a $\sigma$-centralizer and a central-valued mapping. Further, it is shown that every Jordan $\sigma$-centralizer of a triangular algebra is a $\sigma$-centralizer.

References

A. N. Alkenani, M. Ashraf, A. Jabeen, Nonlinear generalized Jordan $(sigma,tau)$-derivations on triangular algebras, Spec. Matrices, 6, 216–228 (2018). DOI: https://doi.org/10.1515/spma-2017-0008

P. N. Anh, L. Van Wyk, Automorphism groups of generalized triangular matrix rings, Linear Algebra and Appl., 434, 1018–1026 (2011). DOI: https://doi.org/10.1016/j.laa.2010.10.007

M. A. Ansari, M. Ashraf, M. S. Akhtar, Lie triple derivations on trivial extension algebras, Bull. Iranian Math. Soc. (2021); DOI: https://doi.org/10.1007/s41980-021-00618-3. DOI: https://doi.org/10.1007/s41980-021-00618-3

M. Ashraf, M. S. Akhtar, M. A. Ansari, Generalized Lie (Jordan) triple derivations on arbitrary triangular algebras, Bull. Malays. Math. Sci. Soc. (2021); DOI: https://doi.org/10.1007/s40840-021-01148-1. DOI: https://doi.org/10.1007/s40840-021-01148-1

M. A. Bahmani, F. Ghomanjani, S. Shateyi, Jordan centralizer maps on trivial extension algebras, Demonstr. Math., 53, 58–66 (2020). DOI: https://doi.org/10.1515/dema-2020-0007

D. Benkovič, Jordan $sigma$-derivations of triangular algebras,} Linear and Multilinear Algebra, 64, № 2, 143–155 (2016). DOI: https://doi.org/10.1080/03081087.2015.1027646

M. Brešar, Jordan derivations of semiprime rings, Proc. Amer. Math. Soc., 104, 1003–1006 (1988). DOI: https://doi.org/10.1090/S0002-9939-1988-0929422-1

W. S. Cheung, Maps on triangular algebras, Ph. D. Diss., Univ. Victoria (2000).

W. S. Cheung, Lie derivation of triangular algebras, Linear and Multilinear Algebra, 51, 299–310 (2003). DOI: https://doi.org/10.1080/0308108031000096993

A. Fošner, W. Jing, Lie centralizers on triangular rings and nest algebras, Adv. Oper. Theory, 4, № 2, 342–350 (2019). DOI: https://doi.org/10.15352/aot.1804-1341

H. Ghahramani, On centralizers of Banach algebras, Bull. Malays. Math. Sci. Soc., 38, № 1, 155–164 (2015). DOI: https://doi.org/10.1007/s40840-014-0011-2

H. Ghahramani, Characterizing Jordan maps on triangular rings through commutative zero products, Mediterr. J. Math.; https://doi.org/10.1007/s00009-018-1082-3. DOI: https://doi.org/10.1007/s00009-018-1082-3

F. Ghomanjani, M. A. Bahmani, A note on Lie centralizer maps, Palest. J. Math., 7, № 2, 468–471 (2018).

C. R. Gonz'{a}lez, J. Repka, J. S'{a}nchez-Ortega, Automorphisms, $sigma$-biderivations and $sigma$-commuting maps of triangular algebras,} Mediterr. J. Math.; https://doi.org/10.1007/s00009-016-0809-2. DOI: https://doi.org/10.1007/s00009-016-0809-2

D. Han, F. Wei, Jordan $(alpha,beta)$-derivations on triangular algebras and related mappings, Linear Algebra and Appl., 434, 259–284 (2011). DOI: https://doi.org/10.1016/j.laa.2010.08.018

I. N. Herstein, Jordan derivations of prime rings, Proc. Amer. Math. Soc., 8, 1104–1110 (1957). DOI: https://doi.org/10.1090/S0002-9939-1957-0095864-2

A. Jabeen, Lie (Jordan) centralizers on generalized matrix algebras, Comm. Algebra (2021); DOI: https://doi.org/10.1080/00927872.2020.1797759. DOI: https://doi.org/10.1080/00927872.2020.1797759

S. Jondrup, Automorphisms and derivations of upper triangular matrix rings, Linear Algebra and Appl., 221, 205–218 (1995). DOI: https://doi.org/10.1016/0024-3795(93)00255-X

T. P. Kezlan, A note on algebra automorphisms of triangular matrices over commutative rings, Linear Algebra and Appl., 135, 181–184 (1990). DOI: https://doi.org/10.1016/0024-3795(90)90121-R

R. Khazal, S. Dv{a}scv{a}lescu, L. Van Wyk, Isomorphism of generalized triangular matrix-rings and recovery of tiles, Int. J. Math. and Math. Sci., 9, 533–538 (2003). DOI: https://doi.org/10.1155/S0161171203205251

L. Liu, On Jordan centralizers of triangular algebras, Banach J. Math. Anal., 10, № 2, 223–234 (2016). DOI: https://doi.org/10.1215/17358787-3492545

L. Liu, On nonlinear Lie centralizers of generalized matrix algebras, Linear and Multilinear Algebra; https://doi.org/10.1080/03081087.2020.1810605. DOI: https://doi.org/10.1080/03081087.2020.1810605

W. S. Martindale, Lie derivations of primitive rings, III, Michigan Math. J., 11, 183–187 (1964). DOI: https://doi.org/10.1307/mmj/1028999091

W. Yang, J. Zhu, Characterizations of additive (generalized) $xi$-Lie $(alpha,beta)$-derivations on triangular algebras, Linear and Multilinear Algebra, 61, 811–830 (2013). DOI: https://doi.org/10.1080/03081087.2012.709244

B. Zalar, On centralizers of semiprime rings, Comment. Math. Univ. Carolin., 32, 609–614 (1991).

J.-H. Zhang, W.-Y. Yu, Jordan derivations of triangular algebras,} Linear Algebra and Appl., 419, 251–255 (2006). DOI: https://doi.org/10.1016/j.laa.2006.04.015

Published
10.05.2023
How to Cite
AshrafM., and AnsariM. A. “$\sigma$-Centralizers of Triangular Algebras”. Ukrains’kyi Matematychnyi Zhurnal, Vol. 75, no. 4, May 2023, pp. 435 -46, doi:10.37863/umzh.v75i4.6924.
Section
Research articles