Monogenic functions with values in commutative complex algebras of the second rank with unity and the generalized biharmonic equation with double characteristics

  • S. V. Gryshchuk Inst. Math. Acad. Sci. Ukraine, Kiev

Abstract

UDC 517.9

We prove that any two-dimensional algebra $\mathbb{B}_{\ast}$ of the second rank with unity over the field of complex numbers $\mathbb{C}$ contains basises $\{e_1,e_2\},$ for which the $\mathbb{B}_{\ast}$-valued ``analytic'' functions $\Phi(xe_1+ye_2),$ where $x$ and $y$ are real variables, satisfy a homogeneous PDE of the fourth order with complex coefficients such that its characteristic equation has just one multiple root and the other roots are simple.
The set of all triples $(\mathbb{B}_{\ast}, \{e_1,e_2\}, \Phi)$ is described in the explicit form.

References

S. V. Gryshchuk, Monogenic functions with values in сommutative сomplex algebras of the second rank with unit and generalized biharmonic equation with simple nonzero simple characteristics, Ukr. mat. zhurn., 73, № 4, 474 – 487 (2021), https://doi.org/10.37863/umzh.v73i4.6199. DOI: https://doi.org/10.1007/s11253-021-01943-w

S. G. My`xly`n, Ploskaya zadacha teory`y` uprugosty`, Tr. Sejsm. y`n-ta AN SSSR, № 65 (1934), 83 s.

N. E. Tovmasyan, Non-regular differential equations and calculations of electromagnetic fields, World Sci. Publ., Singapore (1998), https://doi.org/10.1142/9789812816627 DOI: https://doi.org/10.1142/3665

E. A. Buryachenko, O razmernosty` yadra zadachy` Dy`ry`xle dlya uravneny`j chetvertogo poryadka, Dy`fferencz. uravneny`ya, 51, № 4, 472 – 480 (2015).

I. P. Mel`ny`chenko, By`garmony`chesky`e bazy`sy v algebrax vtorogo ranga, Ukr. mat. zhurn., 38, № 2, 252 – 254 (1986).

S. V. Gryshchuk, Komutaty`vni kompleksni algebry` drugogo rangu z ody`ny`ceyu ta deyaki vy`padky` ploskoyi ortotropiyi. I, Ukr. mat. zhurn., 70, № 8, 1058 – 1071 (2018).

S. V. Gryshchuk, B0 -valued monogenic functions and their applications to the theory of anisotropic plane media, Analytic methods of analysis and differential equations: AMADE-2018, Cambridge Sci. Publ., Cambridge (2020).

S. V. Gryshchuk, Monogenni funkcziyi u dvovy`mirny`x komutaty`vny`x algebrax dlya rivnyan` ploskoyi ortotropiyi, Praczi In-tu pry`kl. matematy`ky` i mexaniky` NAN Ukrayiny`, 32, 18 – 29 (2018).

P. W. Ketchum, Solution of partial differential equations by means of hypervariables, Amer. J. Math., 54, № 2, 253 – 264 (1932), https://doi.org/10.2307/2370988 DOI: https://doi.org/10.2307/2370988

V. F. Kovalev, Y`. P. Mel`ny`chenko, By`garmony`chesky`e funkcy`y` na by`garmony`cheskoj ploskosty`, Dokl. AN USSR. Ser. А, № 8, 25 – 27 (1981).

R. Z. Yeh, Hyperholomorphic functions and higher order partial differential equations in the plane, Pacif. J. Math., 142, № 2, 379 – 399 (1990), http://projecteuclid.org/euclid.pjm/1102646352 DOI: https://doi.org/10.2140/pjm.1990.142.379

V. S. Shpakivs`ky`j, Giperkompleksny`j metod rozv'yazuvannya linijny`x dy`ferenczial`ny`x rivnyan` z chasty`nny`my` poxidny`my`, Praczi In-tu pry`kl. matematy`ky` i mexaniky` NAN Ukrayiny`, 32, 147 – 168 (2018).

V. S. Shpakivskyi, Monogenic functions in finite-dimensional commutative associative algebras, Zb. pracz` In-tu matematy`ky` NAN Ukrayiny`, 12, № 3, 251 – 268 (2015).

S. A. Plaksa, R. P. Puxtayevy`ch, Konstrukty`vny`j opy`s monogenny`x funkczij v skinchennovy`mirnij napivprostij komutaty`vnij algebri, Dop. NAN Ukrayiny`, № 1, 14 – 21 (2014).

S. A. Plaksa, R. P. Pukhtaievych, Monogenic functions in a finite-dimensional semi-simple commutative algebra, An. ¸ Stiin¸t. Univ. “Ovidius” Constan¸ta Ser. Mat., 22, № 1, 221 – 235 (2014), https://doi.org/10.2478/auom-2014-0018 DOI: https://doi.org/10.2478/auom-2014-0018

E. Study, Über Systeme complexer Zahlen und ihre Anwendungen in der Theorie der Transformationsgruppen, Monatsh. Math., 1, № 1, 283 – 354 (1890), https://doi.org/10.1007/BF01692479 DOI: https://doi.org/10.1007/BF01692479

N. G. Chebotarev, Vvedeny`e v teory`yu algebr, 3-e y`zd., Fy`zy`ko-matematy`cheskoe nasledy`e: matematy`ka (algebra), Y`zd-vo LKY`, Moskva, (2008).

W. E. Baylis (Ed.), Clifford (geometric) algebras: with applications to physics, mathematics, and engineering, Birkh¨auser, Boston etc. (1996), https://doi.org/10.1007/978-1-4612-4104-1 DOI: https://doi.org/10.1007/978-1-4612-4104-1

S. V. Gry`shhuk, S. A. Plaksa, O logary`fmy`chnom vychete monogennyx funkcy`j by`garmony`cheskoj peremennoj, Zb. pracz` In-tu matemary`ky` NAN Ukrayiny`, 7, № 2, 227 – 234 (2010).

S. V. Gry`shhuk, S. A. Plaksa, Monogennye funkcy`y` v by`garmony`cheskoj algebre, Ukr. mat. zhurn., 61, № 12, 1587 – 1596 (2009).

Y`. P. Mel`ny`chenko, S. A. Plaksa, Kommutaty`vnye algebry y` prostranstvennye potency`al`nye polya, Y`n-t matematy`ky` NAN Ukray`ny, Ky`ev (2008).

Published
24.01.2022
How to Cite
Gryshchuk , S. V. “Monogenic Functions With Values in Commutative Complex Algebras of the Second Rank With Unity and the Generalized Biharmonic Equation With Double Characteristics”. Ukrains’kyi Matematychnyi Zhurnal, Vol. 74, no. 1, Jan. 2022, pp. 14 -23, doi:10.37863/umzh.v74i1.6948.
Section
Research articles