Infinite order differential operators in the module of formal generalized functions and in a ring of formal power series
Abstract
UDC 517.983
We obtain the general form of continuous linear mappings acting in the module of formal generalized functions over a commutative ring and commuting with the differentiation or shift operator. We also prove that a continuous linear mapping acting in the ring of formal power series over the valuation ring of a complete non-Archimedian field and commuting with the differentiation is a differential operator of infinite order.
References
N. Burbaki, Elementy matematiki. Funkcii dejstvitel'nogo peremennogo. Elementarnaya teoriya, Nauka, Moskva (1965).
YU. F. Korobejnik, Operatory sdviga na chislovyh semejstvah, Izd-vo Rost. un-ta, Rostov-na-Donu (1983).
V. V. Gorodec'kij, Zadacha Koshi dlya evolyucijnih rivnyan' neskinchennogo poryadku, Ruta, Chernivci(2005).
S. L. Gefter, A. L. Piven’, Implicit linear differential-difference equations in the module of formal generalized functions over a commutative ring, J. Math. Sci., 255, № 4, 409 – 422 (2021), https://doi.org/10.1007/s10958-021-05381-8 DOI: https://doi.org/10.1007/s10958-021-05381-8
G. Godefroy, J. H. Shapiro, Operators with dense, invariant, cyclic vector manifolds, J. Funct. Anal., 98, № 2, 229 – 269 (1991), https://doi.org/10.1016/0022-1236(91)90078-J DOI: https://doi.org/10.1016/0022-1236(91)90078-J
A. S. Krivosheev, V. V. Napalkov, Kompleksnyj analiz i operacii svertki, Uspekhi mat. nauk, 47, № 6, 3 – 58 (1992).
L. Schwartz, Theorie des distributions, Hermann, Paris (1998).
Z. I. Borevich, I. R. SHafarevich, Teoriya chisel, Nauka, Moskva (1985).
S. L. Gefter, Differential operators of infinite order in the space of formal Laurent series and in the ring of power series with integer coefficients, J. Math. Sci., 239, № 3, 282 – 291 (2019), https://doi.org/10.1007/s10958-019-04304-y DOI: https://doi.org/10.1007/s10958-019-04304-y
S. L. Gefter, T. E. Stulova, Fundamental solution of the simplest implicit linear differential equation in a vector space, J. Math. Sci., 207, № 2, 166 – 175 (2015), https://doi.org/10.1007/s10958-015-2363-z DOI: https://doi.org/10.1007/s10958-015-2363-z
N. Burbaki, Algebra. Moduli, kol'ca, formy, Nauka, Moskva (1966).
S. L. Gefter, A. L. Piven’, Linear partial differential equations in module of formal generalized functions over commutative ring, J. Math. Sci., 257, № 5, 579 – 596 (2021), https://doi.org/10.1007/s10958-021-05505-0 DOI: https://doi.org/10.1007/s10958-021-05505-0
M. Morimoto, An introductions to Sato’s hyperfunctions, AMS Providence, Rhode Island (1993), https://doi.org/10.1090/mmono/129 DOI: https://doi.org/10.1090/mmono/129
G. Grauert, R. Remmert, Analiticheskie lokal'nye algebry, Nauka, Moskva (1988).
C. Perez-Garcia, W. H. Schikhof, Locally convex spaces over non-Archimedian valued fields, Cambridge Univ. Press (2010), https://doi.org/10.1017/CBO9780511729959 DOI: https://doi.org/10.1017/CBO9780511729959
S. Lang, Algebra, Springer-Verlag, New York (2002), https://doi.org/10.1007/978-1-4613-0041-0 DOI: https://doi.org/10.1007/978-1-4613-0041-0
Copyright (c) 2022 Олексій Півень, Сергій Гефтер
This work is licensed under a Creative Commons Attribution 4.0 International License.