$d$-Gaussian Fibonacci, $d$-Gaussian Lucas polynomials and their matrix representations
Abstract
UDC 517.5
We define $d$-Gaussian Fibonacci polynomials and $d$-Gaussian Lucas polynomials. We present the matrix representations of these polynomials. By using the Riordan method, we obtain the factorizations of the Pascal matrix including the polynomials. In addition, we define the infinite $d$-Gaussian Fibonacci polynomial matrix and the $d$-Gaussian Lucas polynomial matrix and give their inverses.
References
G. Berzsenyi, Gaussian Fibonacci numbers, Fibonacci Quart., 15, 223–236 (1977).
S. Falcón, Á. Plaza, On the Fibonacci $k$-numbers, Chaos, Solitons and Fractals, 32, № 5, 1615–1624 (2007); https://doi.org/10.1016/j.chaos.2006.09.022. DOI: https://doi.org/10.1016/j.chaos.2006.09.022
S. Falcon, Á. Plaza, The $k$-Fibonacci sequence and the Pascal 2-triangle, Chaos, Solitons and Fractals, 33, № 1, 38–49 (2007); https://doi.org/10.1016/j.chaos.2006.10.022. DOI: https://doi.org/10.1016/j.chaos.2006.10.022
V. E. Hoggatt (Jr.), M. Bicknell, Roots of Fibonacci polynomials, Fibonacci Quart., 11, № 3, 271–274 (1973).
J. H. Jordan, Gaussian Fibonacci and Lucas numbers, Fibonacci Quart., 3, № 4, 315–318 (1965).
T. Koshy, Fibonacci and Lucas numbers with applications, John Wiley & Sons (2019).
A. Nalli, P. Haukkanen, On generalized Fibonacci and Lucas polynomials, Chaos, Solitons and Fractals, 42, № 5, 3179–3186 (2009); https://doi.org/10.1016/j.chaos.2009.04.048. DOI: https://doi.org/10.1016/j.chaos.2009.04.048
E. Özkan, M. Taştan, On Gauss Fibonacci polynomials, on Gauss Lucas polynomials and their applications, Commun. Algebra, 48, № 3, 952–960 (2020); https://doi.org/10.1080/00927872.2019.1670193. DOI: https://doi.org/10.1080/00927872.2019.1670193
E. Özkan, I. Altun, Generalized Lucas polynomials and relationships between the Fibonacci polynomials and Lucas polynomials, Commun. Algebra, 47, 10–12 (2019); https://doi.org/10.1080/00927872.2019.1576186. DOI: https://doi.org/10.1080/00927872.2019.1576186
E. Özkan, M. Taştan, A new families of Gauss $k$-Jacobsthal numbers and Gauss $k$-Jacobsthal–Lucas numbers and their polynomials, J. Sci. and Arts, 4, 893–908 (2020). DOI: https://doi.org/10.46939/J.Sci.Arts-20.4-a10
E. Özkan, B. Kuloǧlu, On the new Narayana polynomials, the Gauss Narayana numbers and their polynomials, Asian-Eur. J. Math., 14, № 6, Article~2150100 (2021); https://doi.org/10.1142/S179355712150100X. DOI: https://doi.org/10.1142/S179355712150100X
E. Özkan, M. Taştan, On a new family of Gauss $k$-Lucas numbers and their polynomials, Asian-Eur. J. Math., 14, № 6, Article~2150101 (2021); https://doi.org/10.1142/S1793557121501011. DOI: https://doi.org/10.1142/S1793557121501011
B. Sadaoui, A. Krelifa, $d$-Fibonacci and $d$-Lucas polynomials, J. Math. Model., 9, № 3, 1–12 (2021); https://doi.org/ 10.22124/JMM.2021.17837.1538.
L. W. Shapiro, S. Getu, W. J. Woan, L. C. Woodson, The riordan group, Discrete Appl. Math., 34, № 1-3, 229–239 (1991). DOI: https://doi.org/10.1016/0166-218X(91)90088-E
M. Taştan, E. Özkan, A. G. Shannon, The generalized $k$-Fibonacci polynomials and generalized $k$-Lucas polynomials, Notes Number Theory and Discrete Math., 27, № 2, 148–158 (2021); https://doi.org/10.7546/ nntdm.2021.27.2.148-158. DOI: https://doi.org/10.7546/nntdm.2021.27.2.148-158
Copyright (c) 2023 Engin Özkan
This work is licensed under a Creative Commons Attribution 4.0 International License.