On reduction of the (1+3)-dimensional inhomogeneous Monge-Ampère equation to the first-order partial differential equations

  • V. M. Fedorchuk Pidstryhach Institute for Applied Problems of Mechanics and Mathematics of National Academy of Sciences of Ukraine
  • V. I. Fedorchuk Pidstryhach Institute for Applied Problems of Mechanics and Mathematics of National Academy of Sciences of Ukraine, Lviv
Keywords: classification of symmetry reductions, inhomogeneous Monge-Ampère equation, classification of the Lie algebras, nonconjugate subalgebras of the Lie algebras, the Poincaré group P(1,4)

Abstract

UDC 512.813:517.957.6

We study a connection between the structural properties of two-dimensional nonconjugate subalgebras of the Lie algebra of the generalized Poincaré group P(1,4) and the results of symmetry reduction for the (1+3)-dimensional inhomogeneous Monge-Ampère equation. Some results concerning of the reduction of the equation under investigation to the first-order PDEs are presented.

References

S. Lie, Neue Integrationsmethods der Monge-Amperschen Gleichung, Archiv for Math., 2, 1 – 9 (1877).

S. Lie, Zur Geometrie einer Monge’schen Gleichung, Berichte Sachs. Ges., 50, 1 – 2 (1898).

K. Jörgens, Über die Lösungen der Differentialgleichung $rt-s^2=1$ (German), Math. Ann., 127, 130 – 134 (1954), https://doi.org/10.1007/BF01361114

E. Calabi, Improper affine hyperspheres of convex type and a generalization of a theorem by K. Jörgens , Michigan Math. J., 5, 105 – 126 (1958), http://projecteuclid.org/euclid.mmj/1028998055

A. V. Pogorelov, Mnogomernaya problema Minkovskogo, Nauka, Moskva(1975).

S. V. Habirov, Primenenie kontaktnyh preobrazovanij neodnorodnogo uravneniya Monzha – Ampera v odnomernoj gazovoj dinamike, Dokl. AN SSSR,310, № 2, 333 – 336 (1990).

M. J. P. Cullen, R. J. Douglas, Applications of the Monge – Ampere equation and Monge transport problem to `meteorology and oceanography. Monge Ampere equation: applications to geometry and optimization (Deerfield `Beach, FL, 1997), Contemp. Math., 226, Amer. Math. Soc., Providence, RI, 33 – 53 (1999), https://doi.org/10.1090/conm/226/03234

C. Udrişte, N. Bîlă, Symmetry group of Ţiţeica surfaces PDE, Balkan J. Geom. Appl., 4, № 2, 123 – 140 (1999).

Yau Shing-Tung, Nadis Steve, String theory and the geometry of the universe’s hidden dimensions, Notices Amer. Math. Soc., 58, № 8, 1067 – 1076 (2011).

F. Jiang, N. S. Trudinger, On the second boundary value problem for Monge-Ampère type equations and geometric optics, Arch. Ration. Mech. Anal., 229, № 2, 547 – 567 (2018), https://doi.org/10.1007/s00205-018-1222-8

A. Kushner, V. V. Lychagin, J. Slovák, Lectures on geometry of Monge-Ampère equations with Maple, Nonlinear PDEs, their geometry, and applications, Tutor. Sch. Workshops Math. Sci., Birkhauser Springer, Cham., 53 – 94 (2019).

Yau Shing-Tung, N. Steve, The shape of a life. One mathematician’s search for the universe’s hidden geometry, Yale Univ. Press, New Haven, CT (2019), https://doi.org/10.2307/j.ctvbnm3qt

E. Witten, Superstring perturbation theory via super Riemann surfaces: an overview, Pure Appl. Math. Q., 15, № 1, 517 – 607 (2019), https://doi.org/10.4310/PAMQ.2019.v15.n1.a4

Q. Le, Nam, Global Hölder estimates for 2D linearized Monge-Ampère equations with right-hand side in divergence form, J. Math. Anal. Appl., 485, № 2, 123865 (2020), https://doi.org/10.1016/j.jmaa.2020.123865

Ł. T. St¸epien, On some exact solutions of heavenly equations in four dimensions, AIP Advances., 10, 065105 (2020); doi: https://doi.org/10.1063/1.5144327

S. Lie, Zur allgemeinen theorie der partiellen differentialgleichungen beliebiger Ordnung, Berichte Sachs. Ges., Leipzig, 47, 53 – 128 (1895).

L. V. Ovsyannikov, Gruppovoj analiz differencial'nyh uravnenij, Nauka, Moskva(1978).

P. J. Olver, Applications of Lie groups to differential equations, Springer-Verlag, New York (1986), https://doi.org/10.1007/978-1-4684-0274-2

A. M. Grundland, J. Harnad, P. Winternitz, Symmetry reduction for nonlinear relativistically invariant equations, J. Math. Phys., 25, № 4, 791 – 806 (1984); https://doi.org/10.1063/1.526224

V. M. Fedorchuk, I. M. Fedorchuk, O. S. Lejbov, Redukciya rivnyan' Borna – Infel'da, Monzha – Ampera i ejkonala do linijnih rivnyan', Dop. Akad. nauk Ukraїni, № 11, 24 – 26 (1991).

V. Fedorchuk, Symmetry reduction and exact solutions of the Euler – Lagrange – Born – Infeld, multidimensional Monge – Ampere and Eikonal equations, J. Nonlinear Math. Phys., 2, № 3-4, 329 – 333 (1995); https://doi.org/10.2991/jnmp.1995.2.3-4.13

V. M. Fedopchuk, Simetpijna pedukciya i deyaki tochni pozv’yazki nelinijnogo p’yativimipnogo hvil'ovogo rivnyannya, Ukp. mat. zhupn., 48, № 4, 573 – 577 (1996).

A. M. Grundland, A. J. Hariton, Supersymmetric formulation of polytropic gas dynamics and its invariant solutions, J. Math. Phys., 52, no. 4, 043501 (2011), https://doi.org/10.1063/1.3568945

A. G. Nikitin, O. Kuriksha, Group analysis of equations of axion electrodynamics, Group Analysis of Differential Equations and Integrable Systems, Department of Mathematics and Statistics, University of Cyprus, Nicosia, 152 – 163 (2011).

A. G. Nikitin, O. Kuriksha, Invariant solutions for equations of axion electrodynamics, Commun. Nonlinear Sci. Numer. Simulat., 17, № 12, 4585 – 4601 (2012); https://doi.org/10.1016/j.cnsns.2012.04.009

V. Fedorchuk, V. Fedorchuk, On classification of symmetry reductions for the eikonal equation, Symmetry, 8, № 6, Art. 51 (2016); https://doi.org/10.3390/sym8060051

A. M. Grundland, A. Hariton, Algebraic aspects of the supersymmetric minimal surface equation, Symmetry, 9, № 12, 318 (2017); doi:10.3390/sym9120318

V. Fedorchuk, V. Fedorchuk, On classification of symmetry reductions for partial differential equations, Neklasichni zadachi teoriї diferencial'nih rivnyan': Zb. nauk. prac', prisvyachenij 80-richchyu B. J. Ptashnika, In-t prikl. problem mekhaniki i matematiki im. Ya. S. Pidstrigacha NAN Ukraїni, L'viv, 241 – 255 (2017).

V. Fedorchuk, V. Fedorchuk, Classification of symmetry reductions for the eikonal equation, Pidstryhach Institute for Applied Problems of Mechanics and Mathematics of National Academy of Sciences of Ukraine, Lviv (2018).

V. M. Fedorchuk, V. I. Fedorchuk, Pro klasifikaciyu simetrijnih redukcij (1 + 3)-vimirnogo rivnyannya Monzha – Ampera, Mat. metodi ta fiz.-mekh. polya,63, № 2, 7 – 16 (2020).

W. I. Fushchich, A. G. Nikitin, Reduction of the representations of the generalised Poincaré algebra by the Galilei algebra, J. Phys. A: Math. and Gen., 13, №7, 2319 – 2330 (1980), http://stacks.iop.org/0305-4470/13/2319

W. I. Fushchich, Н. I. Serov, Simmetriya i nekotorye tochnye resheniya mnogomernogo uravneniya Monzha – Ampera, Dokl. AN SSSR, 273, № 3, 543 – 546 (1983).

V. M. Fedorchuk, Rasshcheplyayushchiesya podalgebry algebry Li obobshchennoj gruppy Puankare P(1,4), Ukr. mat. zhurn.,31, № 6, 717 – 722 (1979).

V. M. Fedorchuk, Nerasshcheplyayushchiesya podalgebry algebry Li obobshchennoj gruppy Puankare P(1,4), Ukr. mat. zhurn.,33, № 5, 696 – 700 (1981).

W. I. Fushchich, A. F. Barannik, L. F. Barannik, V. M. Fedorchuk, Continuous subgroups of the Poincaré group $P(1,4)$, J. Phys. A: Math. and Gen., 18, № 14, 2893 – 2899 (1985), http://stacks.iop.org/0305-4470/18/2893

V. M. Fedorchuk, V. I. Fedorchuk, Pro klasifikaciyu niz'korozmirnih nespryazhenih pidalgebr algebri Li grupi Puankare P(1,4), Zb. prac' In-tu matematiki NAN Ukraїni,3, № 2, 302 – 308 (2006)

Published
26.04.2022
How to Cite
FedorchukV. M., and FedorchukV. I. “On Reduction of the (1+3)-Dimensional Inhomogeneous Monge-Ampère Equation to the First-Order Partial Differential Equations”. Ukrains’kyi Matematychnyi Zhurnal, Vol. 74, no. 3, Apr. 2022, pp. 418-26, doi:10.37863/umzh.v74i3.6996.
Section
Research articles