General local cohomology modules in view of low points and high points
Abstract
UDC 512.5
Let $R$ be a commutative Noetherian ring, let $\Phi $ be a system of ideals of $R,$ let $M$ be a finitely generated $R$-module, and let $t$ be a nonnegative integer. We first show that a general local cohomology module $H_{\Phi}^{i}(M)$ is a finitely generated $R$-module for all $i<t$ if and only if $\mathrm{Ass}_{R} (H_{\Phi}^{i}(M))$ is a finite set and $H_{\Phi_{\mathfrak{p}}}^{i}(M_{\mathfrak{p}})$ is a finitely generated $R_{\mathfrak{p}}$-module for all $i<t$ and all $\mathfrak{p}\in \mathrm{Spec}(R)$. Then, as a consequence, we prove that if $(R,\mathfrak{m})$ is a complete local ring, $\Phi$ is countable, and $n\in \mathbb{N}_{0}$ is such that $\big(\mathrm{Ass}_{R} \big(H_{\Phi}^{h_{\Phi}^{n}(M)}(M)\big)\big)_{\geq n}$ is a finite set, then $f_{\Phi}^{n}(M)=h_{\Phi}^{n}(M)$. In addition, we show that the properties of vanishing and finiteness of general local cohomology modules are equivalent on high points over an arbitrary Noetherian (not necessary local) ring. For each covariant $R$-linear functor $T$ from $\mathrm{Mod}(R)$ into itself, which has the global vanishing property on $\mathrm{Mod}(R)$ and for an arbitrary Serre subcategory $\mathcal{S}$ and $t\in \mathbb{N},$ we prove that $\mathcal{R}^{i}T(R)\in \mathcal{S}$ for all $i\geq t$ if and only if $\mathcal{R}^{i}T(M)\in \mathcal{S}$ for any finitely generated $R$-module $M$ and all $i\geq t$. Then we obtain some results on general local cohomology modules.
References
M. Aghapournahr, L. Melkersson, A natural map in local cohomology, Ark. Mat., 48, 243–251 (2010). DOI: https://doi.org/10.1007/s11512-009-0115-3
M. Aghapournahr, L. Melkersson, Finiteness properties of minimax and coatomic local cohomology modules, Arch. Math., 94, 519–528 (2010). DOI: https://doi.org/10.1007/s00013-010-0127-z
D. Asadollahi, R. Naghipour, Faltings' local-global principle for the finiteness of local cohomology modules, Comm. Algebra., 43, 953–958 (2015). DOI: https://doi.org/10.1080/00927872.2013.849261
M. Asgharzadeh, M. Tousi, A unified approach to local cohomology modules using Serre classes, Canad. Math. Bull., 53, 577–586 (2010). DOI: https://doi.org/10.4153/CMB-2010-064-0
K. Bahmanpour, R. Naghipour, M. Sedghi, Minimaxness and cofiniteness properties of local cohomology modules, Comm. Algebra., 41, 2799–2814 (2013). DOI: https://doi.org/10.1080/00927872.2012.662709
M. H. Bijan-Zadeh, Torsion theories and local cohomology over commutative Noetherian ring, J. London Math. Soc., 19, 402–410 (1979). DOI: https://doi.org/10.1112/jlms/s2-19.3.402
M. H. Bijan-Zadeh, A common generalization of local cohomology theories, Glasgow Math. J., 21, 173–181 (1980). DOI: https://doi.org/10.1017/S0017089500004158
M. P. Brodmann, A. Lashgari Faghani, A finiteness result for associated primes of local cohomology modules, Proc. Amer. Math. Soc., 128, 2851–2853 (2000). DOI: https://doi.org/10.1090/S0002-9939-00-05328-4
M. P. Brodmann, R. Y. Sharp, Local cohomology: an algebraic introduction with geometric applications, Cambridge Univ. Press (1998). DOI: https://doi.org/10.1017/CBO9780511629204
K. Divaani-Aazar, M. A. Esmkhani, Artinianness of local cohomology modules of ZD-modules, Comm. Algebra, 33, 2857–2863 (2005). DOI: https://doi.org/10.1081/AGB-200063983
E. G. Evans, Zero divisors in Noetherian-like rings, Trans. Amer. Math. Soc., 155, 505–512 (1971). DOI: https://doi.org/10.1090/S0002-9947-1971-0272773-9
G. Faltings, Der Endlichkeitssatz in der lokalen Kohomologie, Math. Ann., 255, 45–56 (1981). DOI: https://doi.org/10.1007/BF01450555
A. Hajikarimi, Cofiniteness with respect to a Serre subcategory, Math. Notes, 89, 121–130 (2011). DOI: https://doi.org/10.1134/S0001434611010135
T. Marley, J. C. Vassilev, Cofiniteness and associated primes of local cohomology modules, J. Algebra, 256, 180–193 (2002). DOI: https://doi.org/10.1016/S0021-8693(02)00151-5
P. H. Quy, On the finiteness of associated primes of local cohomology modules, Proc. Amer. Math. Soc., 138, 1965–1968 (2010). DOI: https://doi.org/10.1090/S0002-9939-10-10235-4
J. J. Rotman, An introduction to homological algebra, Second ed., Springer Sci. (2009). DOI: https://doi.org/10.1007/b98977
K. I. Yoshida, Cofiniteness of local cohomology modules for ideals of dimension one, Nagoya Math. J., 147, 179–191 (1997). DOI: https://doi.org/10.1017/S0027763000006371
T. Zink, Endlichkeitsbedingungen für Moduln über einem Noetherschen Ring, Math. Nachr., 64, 239–252 (1974). DOI: https://doi.org/10.1002/mana.19740640114
H. Zöschinger, Minimax Moduln, J. Algebra, 102, № 1, 1–32 (1986). DOI: https://doi.org/10.1016/0021-8693(86)90125-0
H. Zöschinger, über die Maximalbedingung für radikalvolle Untermoduln, Hokkaido Math. J., 17, 101–116 (1988). DOI: https://doi.org/10.14492/hokmj/1381517790
Copyright (c) 2023 MirYousef Sadeghi, Khadijeh Ahmadi Amoli, Maryam Chaghamirza
This work is licensed under a Creative Commons Attribution 4.0 International License.