The forcing metric dimension of a total graph of non-zero annihilating ideals
Abstract
UDC 519.17
Let $R$ be a commutative ring with identity, which is not an integral domain. An ideal $I$ of a ring $R$ is called an annihilating ideal if there exists $r\in R- \{0\}$ such that $Ir=(0)$. The total graph of non-zero annihilating ideals of $R,$ denoted by $\Omega(R),$ is а graph with the vertex set $A(R)^*,$ the set of all non-zero annihilating ideals of $R,$ and two distinct vertices $I$ and $J$ are joined if and only if $I+J$ is also an annihilating ideal of $R$. We study the forcing metric dimension of $\Omega(R)$ and determine the forcing metric dimension of $\Omega(R)$. It is shown that the forcing metric dimension of $\Omega(R)$ is equal either to zero or to the metric dimension.
References
N. Abachi, S. Sahebi, On the metric dimension of a total graph of non-zero annihilating ideals, An. Ştiinƫ. Univ. ``Ovidius'' Constanƫa, Ser. Mat., 28, № 3, 5–14 (2020). DOI: https://doi.org/10.2478/auom-2020-0031
M. F. Atiyah, I. G. Macdonald, Introduction to commutative algebra, Addison-Wesley Publ. Co. (1969).
W. Bruns, J. Herzog, Cohen–Macaulay rings, Cambridge Univ. Press (1997). DOI: https://doi.org/10.1017/CBO9780511608681
G. Chartrand, L. Eroh, M. A. Johnson, O. R. Oellermann, Resolvability in graphs and the metric dimension of a graph, Discrete Appl. Math., 105, 99–113 (2000). DOI: https://doi.org/10.1016/S0166-218X(00)00198-0
G. Chartrand, P. Zhang, Kalamazoo, The forcing dimension of a graph, Math. Bohem., 126, № 4, 711–720 (2001). DOI: https://doi.org/10.21136/MB.2001.134116
D. Dolžan, The metric dimension of the annihilating-ideal graph of a finite commutative ring, Bull. Aust. Math. Soc., 103, № 3, 362–368 (2021). DOI: https://doi.org/10.1017/S0004972720001239
D. Dolžan, The metric dimension of the total graph of a finite commutative ring, Canad. Math. Bull., 59, 748–759 (2016). DOI: https://doi.org/10.4153/CMB-2016-015-5
F. Harary, R. A. Melter, On the metric dimension of a graph, Ars Combin., 2, 191–195 (1976).
S. Khuller, B Raghavachari, A. Rosenfeld, Landmarks in graphs, Discrete Appl. Math., 70, № 3, 217–229 (1996). DOI: https://doi.org/10.1016/0166-218X(95)00106-2
T. R. May, O. R. Oellermann, The strong metric dimension of distance hereditary graphs, J. Combin. Math. and Combin. Comput., 76, № 3, 59–73 (2011).
O. R. Oellermann, J. Peters-Fransen, The strong metric dimension of graphs and digraphs, Discrete Appl. Math., 155, 356–364 (2007). DOI: https://doi.org/10.1016/j.dam.2006.06.009
S. Pirzada, M. Aijaz, Metric and upper dimension of zero divisor graphs associated to commutative rings, Acta Univ. Sapientiae Informatica, 12, № 1, 84–101 (2020). DOI: https://doi.org/10.2478/ausi-2020-0006
S. Pirzada, M. Aijaz, S. P. Redmond, Upper dimension and bases of zero divisor graphs of commutative rings, AKCE Int. J. Graphs and Comb., 17, № 1, 168–173 (2019). DOI: https://doi.org/10.1016/j.akcej.2018.12.001
S. Pirzada, M. Imran Bhat, Computing metric dimension of compressed zero divisor graphs associated to rings, Acta Univ. Sapiential Math., 10, № 2, 298–318 (2018). DOI: https://doi.org/10.2478/ausm-2018-0023
B. Shanmukha, B. Sooryanarayana, K. Harinath, Metric dimension of wheels, Far East J. Appl. Math., 8, № 3, 217–229 (2002).
Shikun Ou, Dein Wong, Fenglei Tian, Q. Zhou, Fixing number and metric dimension of a zero-divisor graph associated with a ring, Linear and Multilinear Algebra; DOI/full/10.1080/03081087.2020.1815639 (2020).
S. Visweswaram, H. D. Patel, A graph associated with the set of all nonzero annihilating ideals of a commutative Ring, Discrete Math., Algorithms and Appl., 6, № 4 (2014). DOI: https://doi.org/10.1142/S1793830914500475
D. B. West, Introduction to graph theory, 2nd ed., Prentice Hall, Upper Saddle River (2001).
Copyright (c) 2023 Maryam Pazoki
This work is licensed under a Creative Commons Attribution 4.0 International License.