Conditional and hidden infinite-dimensional symmetries of wave equations

Keywords: Symmetry of differential equations, conditional symmetry, wave equation

Abstract

UDC 517.9

We consider conditional and hidden symmetry of multidimensional wave equations that are generated by additional conditions.
An additional condition that corresponds to the dilation operator generates an infinite-dimensional symmetry for the wave equation.

References

I. A. Yehorchenko, A. I. Vorobyova, Infinite-dimensional symmetry for wave equation with additional condition, arXiv:0910.2380

W. I. Fushchych, N. I. Serov, The symmetry and some exact solutions of the nonlinear many-dimensional Liouville, d'Alembert and eikonal equations, J. Phys. A, 16, 3645 - 3658 (1983), https://doi.org/10.1088/0305-4470/16/15/030

M. Tajiri, Some remarks on similarity and soliton solutions of nonlinear Klein-Gordon equations, J. Phys. Soc. Japan, 53, 3759 - 3764 (1984), https://doi.org/10.1143/JPSJ.53.3759

W. I. Fushchych, V. M. Shtelen', N. I. Serov, Simetrijnyj analiz i tochnye resheniya nelinejnyh uravnenij matematicheskoj fiziki, Nauk. dumka, Kyiv (1989).

W. I. Fushchych, A. F. Barannyk, Pro tochnі rozv'yazki nelіnіjnogo rіvnyannya Dalambera v prostorі Mіnkovs'kogo $R(1,n)$, Dopovіdі NAN Ukraїni, Serіya A, № 6, 31- 34 (1990).

P. J. Olver, P. Rosenau, The construction of special solutions to partial differential equations, Phys. Lett. A, 114, 107-112 (1986), https://doi.org/10.1016/0375-9601(86)90534-7

W. I. Fushchych, I. M.Tsyfra, On a reduction and solutions of the nonlinear wave equations with broken symmetry, J. Phys. A, 20, L45 - L48 (1987), https://doi.org/10.1088/0305-4470/20/2/001

W. I. Fushchych, R. Z. Zhdanov, Symmetry and exact solutions of nonlinear spinor equations, Phys. Rep., 172, 123 - 174 (1989), https://doi.org/10.1016/0370-1573(89)90090-2

P. Clarkson, M.D.Kruskal, New similarity reductions of the Boussinesq equation, J. Math. Phys., 30, 2201 - 2213 (1989), https://doi.org/10.1063/1.528613

D. Levi, P. Winternitz, Non-classical symmetry reduction: example of the Boussinesq equation, J. Phys. A, 22, 2915 - 2924 (1989), https://doi.org/10.1088/0305-4470/22/15/010

R. Z. Zhdanov, I. M. Tsyfra, R. O. Popovych, A precise definition of reduction of partial differential equations, J. Math. Anal. Appl., 238, №1, 101 - 123 (1999), https://doi.org/10.1006/jmaa.1999.6511

L.V.Ovsyannikov, Group analysis of differential equations, New York, Academic Press (1982).

P. J. Olver, Application of Lie groups to differential equations, New York, Springer Verlag (1987).

G. W. Bluman, S. Kumei, Symmetries and differential equations, New York, Springer Verlag (1989).

I. A. Yehorchenko, A. I. Vorobyova, Umovna іnvarіantnіst' ta tochnі rozv'yazki rіvnyannya Klejna-Gordona-Foka, Dopovіdі NAN Ukraїni, № 3, 19 - 22 (1992).

W. I. Fushchych, N. I. Serov, Uslovnaya invariantnost' nelinejnyh uravnenij Dalambera, Liuvillya, Borna-Infel'da i Monzha-Ampera otnositel'no konformnoj algebry, Simmetrijnyj analiz i resheniya uravnenij matematicheskoj fiziki, AN URSR, Іn-t matematiki, Kiїv, 98-02 (1988).

A.F.Barannyk, Yu.D.Moskalenko, Conditional symmetry and exact solutions of the multidimensional nonlinear d'Alembert equation, J. Nonlinear Math. Phys., 3, 336 - 340 (1996), https://doi.org/10.2991/jnmp.1996.3.3-4.11

I. A. Yehorchenko, Group classification with respect to hidden symmetry}, in Proceedings of Fifth International Conference "Symmetry in Nonlinear Mathematical Physics" (June 23 - 29, 2003, Kyiv), Editors A. G. Nikitin, V. M. Boyko, R. O. Popovych and I. A. Yehorchenko, Proceedings of Institute of Mathematics, Kyiv, 50, Part 1, 290 - 297 (2004).

B. Abraham - Shrauner, Hidden symmetries and nonlocal group generators for ordinary differential equations, IMA J. Appl. Math., 56, 235 - 252 (1996), https://doi.org/10.1093/imamat/56.3.235

W. I. Fushchych, R. Z. Zhdanov, Antireduction and exact solutions of nonlinear heat equations, J. Nonlin. Math. Phys., 1, 60 – 64 (1994), https://doi.org/10.2991/jnmp.1994.1.1.4

Published
26.04.2022
How to Cite
Yehorchenko I. A., and VorobyovaA. I. “Conditional and Hidden Infinite-Dimensional Symmetries of Wave Equations”. Ukrains’kyi Matematychnyi Zhurnal, Vol. 74, no. 3, Apr. 2022, pp. 335-41, doi:10.37863/umzh.v74i3.7035.
Section
Research articles