Legendre superconvergent degenerate kernel and Nyström methods for nonlinear integral equations
Abstract
UDC 517.9
We study polynomially based superconvergent collocation methods for the approximation of solutions of nonlinear integral equations. The superconvergent degenerate kernel method is chosen for approximating the solutions of Hammerstein equations, while a superconvergent Nystr\"om method is used for solving Urysohn equations. By applying interpolatory projections based on Legendre polynomials of degree $\leq n,$ we analyze the superconvergence of these methods and their iterated versions. Numerical results are presented to validate the theoretical results.
References
C. Allouch, D. Sbibih, M. Tahrichi, Superconvergent product integration method for Hammerstein integral equations, J. Integral Equations and Appl., 31, 1–28 (2019). DOI: https://doi.org/10.1216/JIE-2019-31-1-1
C. Allouch, D. Sbibih, M. Tahrichi, Superconvergent Nyström method for Urysohn integral equations, BIT Numer. Math., 57, 3–20 (2017). DOI: https://doi.org/10.1007/s10543-016-0629-6
C. Allouch, D. Sbibih, M. Tahrichi, Superconvergent Nyström and degenerate kernel methods for Hammerstein integral equations, J. Comput. and Appl. Math., 258, 30–41 (2014). DOI: https://doi.org/10.1016/j.cam.2013.08.025
C. Allouch, D. Sbibih, M. Tahrichi, Legendre superconvergent Galerkin-collocation type methods for Hammerstein equations, J. Comput. and Appl. Math., 353, 253–264 (2019). DOI: https://doi.org/10.1016/j.cam.2018.12.040
K. E. Atkinson, A survey of numerical methods for solving nonlinear integral equations, J. Integral Equations and Appl., 4, 15–46 (1992). DOI: https://doi.org/10.1216/jiea/1181075664
K. E. Atkinson, The numerical solution of integral equations of the second kind, Cambridge Univ. Press, Cambridge (1997). DOI: https://doi.org/10.1017/CBO9780511626340
M. Golberg, C. Chen, Discrete projection methods for integral equations, Comput. Mech. Publ. (1997).
L. J. Lardy, A variation of Nyström's method for Hammerstein equations, J. Integral Equations and Appl., 3, 43–60 (1981).
H. Kaneko, Y. Xu, Degenerate kernel method for Hammerstein equations, Math. Comp., 56, 141–148 (1991). DOI: https://doi.org/10.1090/S0025-5718-1991-1052097-9
H. Kaneko, R. Noren, P. A. Padilla, Superconvergence of the iterated collocation methods for Hammerstein equations, J. Comput. and Appl. Math., 80, 335–349 (1997). DOI: https://doi.org/10.1016/S0377-0427(97)00040-X
R. P. Kulkarni, T. J. Nidhin, Asymptotic error analysis of projection and modified projection methods for nonlinear integral equations, J. Integral Equations and Appl., 27, 67–101 (2015). DOI: https://doi.org/10.1216/JIE-2015-27-1-67
S. Kumar, Superconvergence of a collocation-type method for Hammerstein equations, IMA J. Numer. Anal., 7, 313–325 (1987). DOI: https://doi.org/10.1093/imanum/7.3.313
S. Kumar, The numerical solution of Hammerstein equations by a method based on polynomial collocation, ANZIAM J., 31, 319–329 (1990). DOI: https://doi.org/10.1017/S0334270000006676
S. Kumar, I. H. Sloan, Improvement by iteration for compact operator equations, Math. Comp., 30, 758–764 (1976). DOI: https://doi.org/10.1090/S0025-5718-1976-0474802-4
I. H. Sloan, Error analysis for a class of degenerate kernel methods, Numer. Math., 25, 231–238 (1976). DOI: https://doi.org/10.1007/BF01399412
G. M. Vainikko, Galerkin's perturbation method and the general theory of approximate methods for non-linear equations, USSR Comput. Math. and Math. Phys., 7, 1–41 (1967). DOI: https://doi.org/10.1016/0041-5553(67)90140-1
Copyright (c) 2023 Chafik
This work is licensed under a Creative Commons Attribution 4.0 International License.