On generalized derivations involving prime ideals with involution
Abstract
UDC 512.5
We study the structure of the quotient ${A}/{P}$, where ${A}$ is any ring with involution $*$ and ${P}$ is a prime ideal of ${A}$. With an aim to construct a ring with involution of this kind, we study the behavior of generalized derivations satisfying the algebraic identities involving prime ideals. As a consequence, currently existing results in this field are enhanced.
References
A. Mamouni, L. Oukhtite, M. Zerra, On derivations involving prime ideals and commutativity in rings, São Paulo J. Math. Sci., 1–14 (2020). DOI: https://doi.org/10.1007/s40863-020-00187-z
B. Davaz, M. A. Raza, A note on automorphisms of Lie ideals in prime rings, Math. Slovaca, 68, № 5, 1223–1229 (2018). DOI: https://doi.org/10.1515/ms-2017-0179
F. A. A. Almahdi, A. Mamouni, M. Tamekkante, A generalization of Posner's theorem on derivations in rings, Indian J. Pure and Appl. Math., 51, № 1, 187–194 (2020). DOI: https://doi.org/10.1007/s13226-020-0394-8
H. E. Mir, A. Mamouni, L. Oukhtite, Commutativity with algebraic identities involving prime ideals, Commun. Korean Math. Soc., 35, № 3, 723–731 (2020).
M. S. Khan, S. Ali, M. Ayedh, Herstein's theorem for prime ideals in rings with involution involving pair of derivations, Commun. Algebra, 50, № 6, 2592–2603 (2022). DOI: https://doi.org/10.1080/00927872.2021.2014513
N. Rehman, M. Hongan, H. M. Alnoghashi, On generalized derivations involving prime ideals, Rend. Circ. Mat. Palermo (2), 71, № 2, 601–609 (2022). DOI: https://doi.org/10.1007/s12215-021-00639-1
N. Rehman, H. M. Alnoghashi, Action of prime ideals on generalized derivations-I; arXiv preprint, arXiv:2107.06769 (2021).
N. Rehman, H. M. Alnoghashi, A. Boua, Identities in a prime ideal of a ring involving generalized derivations, Kyungpook Math. J., 61, № 4, 727–735 (2021).
N. Rehman, H. M. Alnoghashi, $T$-commuting generalized derivations on ideals and semi-prime ideal-II, Mat. Stud., 57, № 1, 98–110 (2022).
N. Rehman, H. M. Alnoghashi, $T$-commuting generalized derivations on ideals and semi-prime ideal, Bol. Soc. Parana. Mat., 1–15 (2022). DOI: https://doi.org/10.30970/ms.57.1.98-110
N. Rehman, H. M. Alnoghashi, M. Hongan, A note on generalized derivations on prime ideals, J. Algebra and Relat. Top., 10, № 1, 159–169 (2022).
N. Rehman, E. Koç Sögütcü, H. M. Alnoghashi, A generalization of Posner's theorem on generalized derivations in rings, J. Iran. Math. Soc., 3, № 1, 1–9 (2022).
Copyright (c) 2023 Nadeem ur Rehman, Hafedh M. Alnoghashi, Motoshi Hongan
This work is licensed under a Creative Commons Attribution 4.0 International License.