Two-dimensional generalization of the Thron–Jones theorem on the parabolic domains of convergence of continued fractions
Abstract
UDC 517.5
For branched continued fractions of а special form (branched continued fractions with independent variables with fixed values of the variables), the notion of $ \mathcal{C} $-figure convergence was introduced and used to establish a two-dimensional generalization of the Thron–Jones theorem on the parabolic domains of convergence of continued fractions. A new method for the investigation of the domains of parabolic convergence of branched continued fractions of a special form is proposed. This method does not use the Stielties–Vitali theorem on convergence of the sequences of holomorphic functions. Hence, it enables us to extend the domain of parabolic convergence to a form similar to that established for the one-dimensional case. In proving this theorem, we essentially use a property of stability of continued fractions under perturbations established in the present work.
References
Т. М. Антонова, Багатовимірне узагальнення теореми про параболічні області збіжності неперервних дробів, Мат. методи та фіз.-мех. поля, 42, № 4, 7 – 12 (1999).
О. Є. Баран, Деякі області збіжності гіллястих ланцюгових дробів спеціального вигляду, Карпат. мат. публ., 5, № 1, 4 – 13 (2013).
Д. И. Боднар, Ветвящиеся цепные дроби, Наук. думка, Киев (1986).
Д. І. Боднар, Р. І. Дмитришин, Багатовимірні приєднані дроби з нерівнозначними змінними і кратні степеневі ряди, Укр. мат. журн., 71, № 3, 325 – 339 (2019).
Д. І. Боднар, Х. Й. Кучмiнська, Параболічна область збіжності для двовимірних неперервних дробів, Мат. студ., 4, 29 – 36 (1995).
Р. І. Дмитришин, Про розвинення деяких функцій у двовимірний $g$-дріб з нерівнозначними змінними, Мат. методи та фіз.-мех. поля, 53, № 4, 28 – 34 (2010).
T. M. Antonova, R. I. Dmytryshyn, Truncation error bounds for the branched continued fraction ${Ʃ} _ {i_ {1= 1}}^ N {a_ {i (1)}}/{1}+{Ʃ} _ {i_ {2= 1}}^{i_1} {a_ {i (2)}}/{1}+{Ʃ} _ {i_ {3= 1}}^{i_2} {a_ {i (3)}}/{1}+… $}, Ukr. Math. J., 72, № 7, 1018 – 1029 (2021). DOI: https://doi.org/10.1007/s11253-020-01841-7
T. Antonova, R. Dmytryshyn, V. Kravtsiv, Branched continued fraction expansions of Horn’s hypergeometric function $H_3$ ratios, Mathematics, 9 (2021). DOI: https://doi.org/10.3390/math9020148
I. Bilanyk, D. Bodnar, Convergence criterion for branched contіnued fractions of the special form with positive elements, Carpathian Math. Publ., 9, № 1, 13 – 21 (2017). DOI: https://doi.org/10.15330/cmp.9.1.13-21
I. Bilanyk, D. Bodnar, L. Buyak, Representation of a quotient of solutions of a four-term linear recurrence relation in the form of a branched continued fraction, Carpathian Math. Publ., 11, № 1, 33 – 41 (2019). DOI: https://doi.org/10.15330/cmp.11.1.33-41
D. I. Bodnar, I. B. Bilanyk, Parabolic convergence regions of branched continued fractions of the special form, Carpathian Math. Publ., 13, № 3, 619 – 630 (2021). DOI: https://doi.org/10.15330/cmp.13.3.619-630
R. I. Dmytryshyn, Convergence of some branched continued fractions with independent variables, Mat. Stud., 47, № 2, 150 – 159 (2017). DOI: https://doi.org/10.15330/ms.47.2.150-159
R. I. Dmytryshyn, Multidimensional regular {C}-fraction with independent variables corresponding to formal multiple power series, Proc. Roy. Soc. Edinburgh Sect. A, 1 – 18 (2019); DOI:10.1017/prm.2019.2. DOI: https://doi.org/10.1017/prm.2019.2
R. I. Dmytryshyn, On some of convergence domains of multidimensional $S$-fractions with independent variables, Carpathian Math. Publ., 11, № 1, 54 – 58 (2019). DOI: https://doi.org/10.15330/cmp.11.1.54-58
R. I. Dmytryshyn, S. V. Sharyn, Approximation of functions of several variables by multidimensional $S$-fractions with independent variables, Carpathian Math. Publ., 13, № 3, 592 – 607 (2019). DOI: https://doi.org/10.15330/cmp.13.3.592-607
W. B. Gragg, D. D. Warner, Two constructive results in continued fractions, SIAM J. Numer. Anal., 20, № 3, 1187 – 1197 (1983). DOI: https://doi.org/10.1137/0720088
W. B. Jones, W. J. Thron, Continued fractions: analytic theory and applications, Addison-Wesley Publ. Co., Reading, Mass. (1980).
W. B. Jones, W. J. Thron, Convergence of continued fractions, Canad. J. Math., 20, 1037 – 1055 (1968). DOI: https://doi.org/10.4153/CJM-1968-101-3
W. J. Thron, Two families of twin convergence regions for continued fractions, Duke Math. J., 10, № 4, 677 – 685 (1943). DOI: https://doi.org/10.1215/S0012-7094-43-01063-4
H. S. Wall, Analytic theory of continued fractions, D.~Van~Nostrand Co., Inc., New~York (1948).
Copyright (c) 2022 Ірина Біланик, Дмитро Боднар
This work is licensed under a Creative Commons Attribution 4.0 International License.