More on stability of two functional equations
Abstract
UDC 517.5
We prove the generalized stability of the functional equations $\|f(x+y)\|=\|f(x)+f(y)\|$ and $\|f(x-y)\|= \|f(x)-f(y)\|$ in $p$-uniformly convex spaces with $p\geq 1.$
References
J. Aczél, J. Dhombres, Functional equations in several variables, Cambridge Univ. Press, Cambridge (1989). DOI: https://doi.org/10.1017/CBO9781139086578
M. R. Abdollahpour, R. Aghayaria, M. Th. Rassiasb, Hyers–Ulam stability of associated Laguerre differential equations in a subclass of analytic functions, J. Math. Anal. and Appl., 437, 605–612 (2016). DOI: https://doi.org/10.1016/j.jmaa.2016.01.024
D. G. Bourgin, Classes of transformations and bordering transformations, Bull. Amer. Math. Soc., 57, 223–237 (1951). DOI: https://doi.org/10.1090/S0002-9904-1951-09511-7
L. Cheng, Q. Fang, S. Luo, L. Sun, On non-surjective coarse isometries between Banach spaces, Quaest. Math., 42, № 3, 347–362 (2019). DOI: https://doi.org/10.2989/16073606.2018.1448900
S. Czerwik, Functional equations and inequalities in several variables, World Sci. Publ. Co., New Jersey etc. (2002). DOI: https://doi.org/10.1142/4875
J. Brzdek, D. Popa, B. Xu, On approximate solutions of the linear functional equation of higher order, J. Math. Anal. and Appl., 373, 680–689 (2011). DOI: https://doi.org/10.1016/j.jmaa.2010.08.028
Y. Dong, Generalized stability of two functional equations, Aequationes Math., 86, 269–277 (2013). DOI: https://doi.org/10.1007/s00010-012-0180-8
P. Fischer, G. Muszély, On some new generalizations of the functional equation of Cauchy, Canad. Math. Bull., 10, 197–205 (1967). DOI: https://doi.org/10.4153/CMB-1967-018-x
R. Ger, A Pexider-type equation in normed linear space, Österreich. Akad. Wiss. Math.-Natur. K1. Sitzungsber. II, 206, 291–303 (1997).
O. Hanner, On uniformly convexity of $L_p$ and $ell_p$, Ark. Mat., 3, 239–244 (1956). DOI: https://doi.org/10.1007/BF02589410
D. H. Hyers, On the stability of the linear functional equation, Proc. Nat. Acad. Sci., 27, 222–224 (1941). DOI: https://doi.org/10.1073/pnas.27.4.222
D. H. Hyers, T. M. Rassias, Approximate homomorphisms, Aequationes Math., 44, 125–153 (1992). DOI: https://doi.org/10.1007/BF01830975
Y. Jin, C. Park, M. Th. Rassias, Hom-derivations in $C^ast$-ternary algebras, Acta Math. Sin. (Engl. Ser.), 36, № 9, 1025–1038 (2020). DOI: https://doi.org/10.1007/s10114-020-9323-3
S. M. Jung, D. Popa, M. Th. Rassias, On the stability of the linear functional equation in a single variable on complete metric groups, J. Global Optim., 59, 165–171 (2014). DOI: https://doi.org/10.1007/s10898-013-0083-9
S. M. Jung, Hyers–Ulam–Rassias stability of functional equations in nonlinear analysis, Springer Optim. and Appl., vol. 48, Springer, New York (2011). DOI: https://doi.org/10.1007/978-1-4419-9637-4
S. M. Jung, K. Lee, M. Th. Rassias, S. Yang, Approximation properties of solutions of a mean value-type functional inequality, II, Mathematics, 8, (2020); DOI: 10.3390/math8081299. DOI: https://doi.org/10.3390/math8081299
S. M. Jung, P. K. Sahoo, On the stability of a mean value type functional equation, Demonstr. Math., 33, 793–796 (2000). DOI: https://doi.org/10.1515/dema-2000-0411
P. Kannappan, Functional equations and inequalities with applications, Springer, New York (2009). DOI: https://doi.org/10.1007/978-0-387-89492-8
J. Lindenstrauss, A. Szankowski, Non linear perturbations of isometries, Astérisque, 131, 357–371 (1985).
T. Miura, S. Miyajima, S. Takahasi, A characterization of Hyers–Ulam stability of first order linear differential operators, J. Math. Anal. and Appl., 286, 136–146 (2003). DOI: https://doi.org/10.1016/S0022-247X(03)00458-X
Th. M. Rassias, On the stability of the linear mapping in Banach space, Proc. Amer. Math. Soc., 72, 297–300 (1978). DOI: https://doi.org/10.1090/S0002-9939-1978-0507327-1
Th. M. Rassias, On the stability of functional equations in Banach space, J. Math. Anal. and Appl., 251, 264–284 (2000). DOI: https://doi.org/10.1006/jmaa.2000.7046
P. K. Sahoo, P. Kannappan, Introduction to functional equations, Taylor Francis Group (2011). DOI: https://doi.org/10.1201/b10722
J. Sikorska, Stability of the preservation of the equality of distance, J. Math. Anal. and Appl., 311, 209–217 (2005). DOI: https://doi.org/10.1016/j.jmaa.2005.02.039
F. Skof, On the functional equation $|f(x+y)-f(x)|=|f(y)|$, Atti Accad. Sci. Torino Cl. Sci. Fis. Mat. Natur., 127, 229–237 (1993).
J. Tabor, Stability of the Fischer–Musz'{e}ly functional equation, Publ. Math., 62, 205–211 (2003). DOI: https://doi.org/10.5486/PMD.2003.2725
S. M. Ulam, A collection of mathematical problems, Intersci. Publ., New York (1968).
Copyright (c) 2023 Longfa Sun, Yunbai Dong
This work is licensed under a Creative Commons Attribution 4.0 International License.