Complex Hessian-type equations in the weighted $m$-subharmonic class
Abstract
UDC 517.5
We study the existence of a solution to a general type of complex Hessian equation on some Cegrell classes. For a given measure $\mu$ defined on an $m$-hyperconvex domain $\Omega \subset \mathbb{C}^n,$ under suitable conditions, we prove that the equation $\chi(.) H_m(.)=\mu$ has a solution that belongs to the class $\mathcal{E}_{m,\chi}(\Omega).$
References
H. Amal, S. Asserda, A. El Gasmi, Weak solutions to the complex Hessian type equations for arbitrary measures, Complex Anal. and Oper. Theory, 14, (2020). DOI: https://doi.org/10.1007/s11785-020-01044-9
S. Benelkourchi, V. Guedj, A. Zeriahi, Plurisubharmonic functions with weak singularities, Complex Analysis, Digital Geometry, Proc. Kiselmanfest, Uppsala Univ. (2007), p. 5773.
Z. Błocki, Weak solutions to the complex Hessian equation, Ann. Inst. Fourier (Grenoble), 55, № 5, 1735–1756 (2005). DOI: https://doi.org/10.5802/aif.2137
U. Cegrell, Pluricomplex energy, Acta Math., 180, 187–217 (1998). DOI: https://doi.org/10.1007/BF02392899
U. Cegrell, The general definition of the comlex Monge–Amp`ere operator, Ann. Inst. Fourier (Grenoble), 54, 159–179 (2004). DOI: https://doi.org/10.5802/aif.2014
D. T. Chuyen, V. T. Thanh, H. T. Lam, D. T. Duong, Some relation and comparison principle between the classes $mathcal{F}_{m,chi},$ $mathcal{E}_m$ and $mathcal{N}_m,$} Tap chi Khoa hoc – Dai hoc Tay bac, 20, 95–103 (2020).
R. Czyz, On a Monge–Amp`ere type equation in the Cegrell class $mathcal{E}_{chi}$, Ann. Polon. Math., 99, 89–97 (2010). DOI: https://doi.org/10.4064/ap99-1-8
A. El Gasmi, The Dirichlet problem for the complex Hessian operator in the class $N_m(Omega,f)$, Math. Scand., 127, 287–316 (2021). DOI: https://doi.org/10.7146/math.scand.a-125994
L. M. Hai, P. H. Hiep, N. X. Hong, N. V. Phu, The Monge–Amp'ere type equation in the weighted pluricomplex energy class, Int. J. Math., 25, № 5, Article 1450042 (2014). DOI: https://doi.org/10.1142/S0129167X14500426
L. M. Hai, V. Van Quan, Weak solutions to the complex $m$-Hessian equation on open subsets of $mathbb{C}^n$, Complex Anal. and Oper. Theory, 13, 4007–4025 (2019). DOI: https://doi.org/10.1007/s11785-019-00948-5
J. Hbil, M. Zaway, Some results on complex $m$-subharmonic classes}; ArXiv:2201.06851.
V. V. Hung, Local property of a class of m-subharmonic functions, Vietnam J. Math., 44, № 3, 621–630 (2016). DOI: https://doi.org/10.1007/s10013-015-0176-5
V. V. Hung, N. V. Phu, Hessian measures on $m$-polar sets and applications to the complex Hessian equations, Complex Var. and Elliptic Equat., 8, 1135–1164 (2017). DOI: https://doi.org/10.1080/17476933.2016.1273907
C. H. Lu, A variational approach to complex Hessian equations in $C^n$, J. Math. Anal. and Appl., 431, № 1, 228–259 (2015). DOI: https://doi.org/10.1016/j.jmaa.2015.05.067
C. H. Lu, Equations Hessiennes complexes, Ph. D. Thesis, Univ. Paul Sabatier, Toulouse, France (2012); http://thesesups.ups-tlse.fr/1961/.
A. S. Sadullaev, B. I. Abdullaev, Potential theory in the class of $m$-subharmonic functions, Tr. Mat. Inst. Steklova, 279, 166–192 (2012). DOI: https://doi.org/10.1134/S0081543812080111
N. V. Thien, Maximal $m$-subharmonic functions and the Cegrell class $mathcal{N}_m,$} Indag. Math., 30, 717–739 (2019).
Copyright (c) 2023 mohamed zaway
This work is licensed under a Creative Commons Attribution 4.0 International License.