Complex Hessian-type equations in the weighted m-subharmonic class
DOI:
https://doi.org/10.37863/umzh.v75i6.7122Keywords:
m-subharmonic function, Capacity, Hessian operator.Abstract
UDC 517.5
We study the existence of a solution to a general type of complex Hessian equation on some Cegrell classes. For a given measure μ defined on an m-hyperconvex domain Ω⊂Cn, under suitable conditions, we prove that the equation χ(.)Hm(.)=μ has a solution that belongs to the class Em,χ(Ω).
References
H. Amal, S. Asserda, A. El Gasmi, Weak solutions to the complex Hessian type equations for arbitrary measures, Complex Anal. and Oper. Theory, 14, (2020). DOI: https://doi.org/10.1007/s11785-020-01044-9
S. Benelkourchi, V. Guedj, A. Zeriahi, Plurisubharmonic functions with weak singularities, Complex Analysis, Digital Geometry, Proc. Kiselmanfest, Uppsala Univ. (2007), p. 5773.
Z. Błocki, Weak solutions to the complex Hessian equation, Ann. Inst. Fourier (Grenoble), 55, № 5, 1735–1756 (2005). DOI: https://doi.org/10.5802/aif.2137
U. Cegrell, Pluricomplex energy, Acta Math., 180, 187–217 (1998). DOI: https://doi.org/10.1007/BF02392899
U. Cegrell, The general definition of the comlex Monge–Amp`ere operator, Ann. Inst. Fourier (Grenoble), 54, 159–179 (2004). DOI: https://doi.org/10.5802/aif.2014
D. T. Chuyen, V. T. Thanh, H. T. Lam, D. T. Duong, Some relation and comparison principle between the classes mathcalFm,chi, mathcalEm and mathcalNm,} Tap chi Khoa hoc – Dai hoc Tay bac, 20, 95–103 (2020).
R. Czyz, On a Monge–Amp`ere type equation in the Cegrell class mathcalEchi, Ann. Polon. Math., 99, 89–97 (2010). DOI: https://doi.org/10.4064/ap99-1-8
A. El Gasmi, The Dirichlet problem for the complex Hessian operator in the class Nm(Omega,f), Math. Scand., 127, 287–316 (2021). DOI: https://doi.org/10.7146/math.scand.a-125994
L. M. Hai, P. H. Hiep, N. X. Hong, N. V. Phu, The Monge–Amp'ere type equation in the weighted pluricomplex energy class, Int. J. Math., 25, № 5, Article 1450042 (2014). DOI: https://doi.org/10.1142/S0129167X14500426
L. M. Hai, V. Van Quan, Weak solutions to the complex m-Hessian equation on open subsets of mathbbCn, Complex Anal. and Oper. Theory, 13, 4007–4025 (2019). DOI: https://doi.org/10.1007/s11785-019-00948-5
J. Hbil, M. Zaway, Some results on complex m-subharmonic classes}; ArXiv:2201.06851.
V. V. Hung, Local property of a class of m-subharmonic functions, Vietnam J. Math., 44, № 3, 621–630 (2016). DOI: https://doi.org/10.1007/s10013-015-0176-5
V. V. Hung, N. V. Phu, Hessian measures on m-polar sets and applications to the complex Hessian equations, Complex Var. and Elliptic Equat., 8, 1135–1164 (2017). DOI: https://doi.org/10.1080/17476933.2016.1273907
C. H. Lu, A variational approach to complex Hessian equations in Cn, J. Math. Anal. and Appl., 431, № 1, 228–259 (2015). DOI: https://doi.org/10.1016/j.jmaa.2015.05.067
C. H. Lu, Equations Hessiennes complexes, Ph. D. Thesis, Univ. Paul Sabatier, Toulouse, France (2012); http://thesesups.ups-tlse.fr/1961/.
A. S. Sadullaev, B. I. Abdullaev, Potential theory in the class of m-subharmonic functions, Tr. Mat. Inst. Steklova, 279, 166–192 (2012). DOI: https://doi.org/10.1134/S0081543812080111
N. V. Thien, Maximal m-subharmonic functions and the Cegrell class mathcalNm,} Indag. Math., 30, 717–739 (2019).