Fine-grained evaluations of the best estimates for smooth functions in C2π in terms of linear combinations of modules of continuity of their derivatives

Authors

  • Yu. P. Babich Ukrainian state university of science and technologies, Dnipro
  • T. F. Mikhailova Ukrainian state university of science and technologies, Dnipro

DOI:

https://doi.org/10.37863/umzh.v74i4.7124

Keywords:

modules of the non-procurrency, trigonometric polynomial

Abstract

UDC 517.5

For the best approximations of en1(f) functions in C12π by trigonometric polynomials, Zhuk proved the exact Jackson inequality en1(f)π4nω(f,πn).
In this paper, we prove the following version of Jackson's exact inequality: en1(f)π4n(12ω(f,π2n)+12ω(f,πn)).

References

N. P. Kornejchuk, Tochnaya konstanta v teoreme D. Dzheksona o nailuchshem ravnomernom priblizhenii nepreryvnyh periodicheskih funkcij, Dokl. AN SSSR,145, 514 – 515 (1962).

N. P. Kornejchuk, Ekstremal'nye zadachi teorii priblizheniya, Nauka, Moskva (1976).

S. A. Pichugov, Vognutye obolochki modulej nepreryvnosti, Ukr. mat. zhurn., 71, № 5, 716 – 720 (2019).

V. V. ZHuk, Nekotorye tochnye neravenstva mezhdu ravnomernymi priblizheniyami periodicheskih funkcij, Dokl. AN SSSR,201, 263 – 266 (1967).

А. A. Ligun, O tochnyh konstantah priblizheniya differenciruemyh periodicheskih funkcij, Mat. zametki, 14, № 1, 21 – 30 (1973).

O. L. Vinogradov, V. V. ZHuk, Tochnye neravenstva, svyazannye s ocenkami priblizhenij periodicheskih funkcij posredstvom modulej nepreryvnosti nechetnyh proizvodnyh s razlichnym shagom, Problemy mat. analiza, vyp. 19, 69 – 88 (1999).

Published

23.05.2022

Issue

Section

Short communications

How to Cite

Babich, Yu. P., and T. F. Mikhailova. “Fine-Grained Evaluations of the Best Estimates for Smooth Functions in C2π in Terms of Linear Combinations of Modules of Continuity of Their Derivatives”. Ukrains’kyi Matematychnyi Zhurnal, vol. 74, no. 4, May 2022, pp. 569-72, https://doi.org/10.37863/umzh.v74i4.7124.