Fine-grained evaluations of the best estimates for smooth functions in C2π in terms of linear combinations of modules of continuity of their derivatives
DOI:
https://doi.org/10.37863/umzh.v74i4.7124Keywords:
modules of the non-procurrency, trigonometric polynomialAbstract
UDC 517.5
For the best approximations of en−1(f) functions in C12π by trigonometric polynomials, Zhuk proved the exact Jackson inequality en−1(f)⩽π4nω(f′,πn).
In this paper, we prove the following version of Jackson's exact inequality: en−1(f)⩽π4n(12ω(f′,π2n)+12ω(f′,πn)).
References
N. P. Kornejchuk, Tochnaya konstanta v teoreme D. Dzheksona o nailuchshem ravnomernom priblizhenii nepreryvnyh periodicheskih funkcij, Dokl. AN SSSR,145, 514 – 515 (1962).
N. P. Kornejchuk, Ekstremal'nye zadachi teorii priblizheniya, Nauka, Moskva (1976).
S. A. Pichugov, Vognutye obolochki modulej nepreryvnosti, Ukr. mat. zhurn., 71, № 5, 716 – 720 (2019).
V. V. ZHuk, Nekotorye tochnye neravenstva mezhdu ravnomernymi priblizheniyami periodicheskih funkcij, Dokl. AN SSSR,201, 263 – 266 (1967).
А. A. Ligun, O tochnyh konstantah priblizheniya differenciruemyh periodicheskih funkcij, Mat. zametki, 14, № 1, 21 – 30 (1973).
O. L. Vinogradov, V. V. ZHuk, Tochnye neravenstva, svyazannye s ocenkami priblizhenij periodicheskih funkcij posredstvom modulej nepreryvnosti nechetnyh proizvodnyh s razlichnym shagom, Problemy mat. analiza, vyp. 19, 69 – 88 (1999).