Wiman-type inequality in multiple-circular domains: Lévy’s phenomenon and exceptional sets
Abstract
УДК 517.555
For the classical Wiman inequality $M_f(r)\leq\mu_f(r)(\ln\mu_f(r))^{1/2+\varepsilon},$ $\varepsilon>0,$ with entire functions $f(z)=\displaystyle \sum\nolimits _{n=0}^{+\infty}a_nz^n,$ $z\in {\mathbb C},$ which holds outside a set of finite logarithmic measure, P. L${\rm\acute{e}}$vy established (1929) that under some additional regularity conditions on $\ln M_f (r)$ the constant $1/2$ can be replaced by $1/4$ almost surely in some sense; here $M_f(r)=\max \big \{|f(z)|\colon |z|=r \big \},$ $\mu_f(r)=\max \big \{|a_n|r^n\colon n\geq 04\},$ $r>0. $ In this paper, we prove that the result established by P. L${\rm\acute{e}}$vy holds also in the case of Wiman-type inequality for analytic functions in any multiple-circular domain, which gives an affirmative answer to the question posed by A. A. Goldberg and M. M. Sheremeta (1996). Earlier, the answer to their question was obtained for Fenton's inequality in the case of entire functions of two variables (Mat. Stud., {\bf 23}, \No 2 (2005)), entire functions of several variables (Ufa Math. J., {\bf 6}, \No 2 (2014)), and analytic functions of several variables in a polydisc (Eur. J. Math., {\bf 6}, \No 1 (2020)).
References
G. Valiron, Functions analytiques, Press Univ. de France, Paris (1954).
H. Wittich, Neuere Untersuchungen uber eindeutige analytische Funktionen, Springer-Verlag, Berlin etc. (1955). DOI: https://doi.org/10.1007/978-3-662-12575-5
P. C. Rosenbloom, Probability and entire functions, Stud. Math. Anal. and Relat. Top., Calif. Univ. Press, Stanford (1962), p. 325 – 332.
O. B. Skaskiv, P. V. Filevych, On the size of an exceptional set in the Wiman theorem, Mat. Stud., 12, № 1, 31 – 36 (1999) (in Ukrainian).
O. B. Skaskiv, O. V. Zrum, On an exeptional set in the Wiman inequalities for entire functions, Mat. Stud., 21, № 1, 13 – 24 (2004) (in Ukrainian).
A. O. Kuryliak, O. B. Skaskiv, Wiman’s type inequality for analytic and entire functions and $h$-measure of an exceptional sets, Carpathian Math. Publ., 12, № 2, 492 – 498 (2020), https://doi.org/10.15330/cmp.12.2.492-498 DOI: https://doi.org/10.15330/cmp.12.2.492-498
P. Levy, Sur la croissance de fonctions entie`re, Bull. Soc. Math. France, 58, 29 – 59, 127 – 149 (1930). DOI: https://doi.org/10.24033/bsmf.1162
W. Bergweiler, On meromorphic function that share three values and on the exceptional set in Wiman – Valiron theory, Kodai Math. J., 13, № 1, 1 – 9 (1990); https://doi.org/10.2996/kmj/1138039154. DOI: https://doi.org/10.2996/kmj/1138039154
T. M. Salo, O. B. Skaskiv, O. M. Trakalo, On the best possible description of exeptional set in Wiman – Valiron theory for entire function, Mat. Stud., 16, № 2, 131 – 140 (2001).
O. B. Skaskiv, O. M. Trakalo, On exeptional set in Borel relation for multiple entire Dirichlet series, Mat. Stud., 15, № 2, 163 – 172 (2001) (in Ukrainian).
P. V. Filevych, An exact estimate for the measure of the exceptional set in the Borel relation for entire functions, Ukr. Math. J., 53, № 2, 328 – 332 (2001); https://doi.org/10.1023/A:1010489609188 DOI: https://doi.org/10.1023/A:1010489609188
O. B. Skaskiv, O. M. Trakalo, Sharp estimate of exceptional set in Borel’s relation for entire functions of several complex variables, Mat. Stud., 18, № 1, 53 – 56 (2002) (in Ukrainian).
O. B. Skaskiv, D. Yu. Zikrach, On the best possible description of an exceptional set in asymptotic estimates for Laplace – Stieltjes integrals, Mat. Stud., 35, № 2, 131 – 141 (2011).
T. M. Salo, O. B. Skaskiv, Minimum modulus of lacunary power series and h-measure of exceptional sets, Ufa Math. J., 9, № 4, 135 – 144 (2017); https://doi.org/10.13108/2017-9-4-135. DOI: https://doi.org/10.13108/2017-9-4-135
A. O. Kuryliak, O. B. Skaskiv, Wiman’s type inequality in multiple-circular domain, Axioms, 2021, № 10(4), Article ID: 348 (2021); https://doi.org/10.3390/axioms10040348. DOI: https://doi.org/10.3390/axioms10040348
T. Kovari, On the maximum modulus and maximal term of functions analytic in the unit disc, J. London Math. Soc., 41, 129 – 137 (1966); https://doi.org/10.1112/jlms/s1-41.1.129. DOI: https://doi.org/10.1112/jlms/s1-41.1.129
N. V. Suleymanov, An estimate of the Wiman – Valiron type for power series with a finite radius of convergence and its sharpness, Dokl. Akad. Nauk USSR, 253, № 4, 822 – 824 (1980) (in Russian).
P. Erdős, A. Rényi, On random entire function, Zastosowania mat., 10, 47 – 55 (1969). DOI: https://doi.org/10.4064/am-10-1-47-55
J. M. Steele, Sharper Wiman inequality for entire functions with rapidly oscillating coefficients, J. Math. Anal. and Appl., 123, 550 – 558 (1987), https://doi.org/10.1016/0022-247X(87)90329-5 DOI: https://doi.org/10.1016/0022-247X(87)90329-5
P. V. Filevych, Some classes of entire functions in which the Wiman – Valiron inequality can be almost certainly improved, Mat. Stud., 6, 59 – 66 (1996) (in Ukrainian).
P. V. Filevych, The Baire categories and Wiman’s inequality for entire functions, Mat. Stud., 20, № 2, 215 – 221 (2003).
O. B. Skaskiv, Random gap power series and Wiman’s inequality, Mat. Stud., 30, № 1, 101 – 106 (2008) (in Ukrainian).
O. B. Skaskiv, A. O. Kuryliak, Direct analogues of Wiman’s inequality for analytic functions in the unit disk, Carpathian Math. Publ., 2, № 1, 109 – 118 (2010) (in Ukrainian).
A. O. Kuryliak, O. B. Skaskiv, I. E. Chyzhykov, Baire categories and Wiman’s inequality for analytic functions, Bull. Soc. Sci. Lett. Lodz, 62, № 3, 17 – 33 (2012).
O. V. Zrum, O. B. Skaskiv, On Wiman’s inequality for random entire functions of two variables, Mat. Stud., 23, № 2, 149 – 160 (2005) (in Ukrainian).
P. C. Fenton, Wiman – Valiron theory in two variables, Trans. Amer. Math. Soc., 347, № 11, 4403 – 4412 (1995), https://doi.org/10.2307/2155043 DOI: https://doi.org/10.1090/S0002-9947-1995-1308010-X
A. O. Kuryliak, O. B. Skaskiv, O. V. Zrum, Levy’s phenomenon for entire functions of several variables, Ufa Math. J., 6, № 2, 118 – 127 (2014), https://doi.org/10.13108/2014-6-2-111 DOI: https://doi.org/10.13108/2014-6-2-111
J. Gopala Krishna, I. H. Nagaraja Rao, Generalised inverse and probability techniques and some fundamental growth theorems in ${bf C}sp{k}$, J. Indian Math. Soc., 41, 203 – 219 (1977).
A. Schumitzky, Wiman – Valiron theory for functions of several complex variables, Ph. D. Dissertation, Ithaca, Cornell Univ. (1965).
A. Schumitzky, A probabilistic approach to the Wiman – Valiron theory for entire functions of several complex variables, Complex Variables, 13, 85 – 98 (1989), https://doi.org/10.1080/17476938908814380 DOI: https://doi.org/10.1080/17476938908814380
A. O. Kuryliak, O. B. Skaskiv, Wiman’s type inequalities without exceptional sets for random entire functions of several variables, Mat. Stud., 38, № 1, 35 – 50 (2012).
I. F. Bitlyan, A. A. Goldberg, Wiman – Valiron’s theorem for entire functions of several complex variables, Vestn. Leningrad Univ. Ser. Mat., Mech. and Astron., 2, № 131, 27 – 41 (1959) (in Russian).
O. B. Skaskiv, O. M. Trakalo, On classical Wiman’s inequality for multiple entire Dirichlet series, Mat. Metods and Fys.-Mekh. Polya, 43, № 3, 34 – 39 (2000) (in Ukrainian).
A. O. Kuryliak, S. I. Panchuk, O. B. Skaskiv, Gol’dberg type inequality for entire functions and diagonal maximal term, Mat. Stud. 54, № 2, 135 – 145 (2020); https://doi.org/10.30970/ms.54.2.135-145. DOI: https://doi.org/10.30970/ms.54.2.135-145
A. O. Kuryliak, L. O. Shapovalovska, O. B. Skaskiv, Wiman’s type inequality for analytic functions in the polydisc, Ukr. Math. J., 68, № 1, 78 – 86 (2016), https://doi.org/10.1007/s11253-016-1210-9 DOI: https://doi.org/10.1007/s11253-016-1210-9
A. Kuryliak, O. Skaskiv, S. Skaskiv, Levy’s phenomenon for analytic functions on a polydisk, Eur. J. Math., 6, № 1, 138 – 152 (2020); https://doi.org/10.1007/s40879-019-00363-2. DOI: https://doi.org/10.1007/s40879-019-00363-2
A. Kuryliak, V. Tsvigun, Wiman’s type inequality for multiple power series in the unbounded cylinder domain, Mat. Stud., 49, № 1, 29 – 51 (2018); https://doi.org/10.15330/ms.49.1.29-51. DOI: https://doi.org/10.15330/ms.49.1.29-51
Copyright (c) 2022 Andriy Kuryliak
This work is licensed under a Creative Commons Attribution 4.0 International License.