Approximation of holomorphic functions by Cesàro means
Abstract
UDC 517.5
For the Lipschitz class of functions holomorphic in the disc, we present a constructive characterization of this class in terms of Cesaro’s means of order $\alpha \ge 2$ of the Taylor series. We solve the problem of exact upper bound for the deviations of Cesaro’s means of order $\alpha \ge 2$ as well as for the deviations of Riesz’s means of order 2 of the Taylor series in the class of functions holomorphic in the disc and having a bounded derivative.
References
M. Riesz, Sur la sommation des series de Fourier , Acta Sci. Math., 1, 104 – 113 (1923).
A. Zigmund, Trigonometricheskie ryady: v 2-h t. , t. 1, Mir, Moskva (1965).
E. A. Storozhenko, Priblizhenie funkcij klassa Hp , 0 < p leq 1 , Mat. sb., 105, № 4, 601 – 621 (1978).
A. I. Stepanec, Metody teorii priblizhenij: v 2-h ch., ch. 1 , In-t matematiki NAN Ukrainy, Kiev (2002).
G.-I. Sunouchi, C. Watari, On determination of the class of saturation in the theory of approximation of functions. II , Tohoku Math. J., II. Ser., 11, 480 – 488 (1959), https://doi.org/10.2748/tmj/1178244545 DOI: https://doi.org/10.2748/tmj/1178244545
A. H. Tureckij, O klassah nasyshcheniya v prostranstve $C$ , Izv. AN SSSR. Ser. mat., 25, № 3, 411 – 442 (1961).
H. Berens, On the saturation theorem for the Cesaro means of Fourier series , Acta Math. Acad. Sci. Hung., 21, 95 – 99 (1970), https://doi.org/10.1007/BF02022492 DOI: https://doi.org/10.1007/BF02022492
P. M. Tamrazov, Gladkosti i polinomial'nye priblizheniya , Nauk. dumka, Kiev (1975).
V. V. Savchuk, S. O. CHajchenko, M. V. Savchuk, Nablizhennya obmezhenih golomorfnih i garmonichnih funkcij serednimi Fejєra , Ukr. mat. zhurn., 71, № 4, 516 – 542 (2019).
V. V. Savchuk, Priblizheniya srednimi Fejera funkcij klassa Dirihle , Mat. zametki, 81, № 5, 744 – 750 (2007). DOI: https://doi.org/10.4213/mzm3718
A. Zygmund, On the degree of approximation of functions by Fejer means , Bull. Amer. Math. Soc., 51, 274 – 278 (1945), https://doi.org/10.1090/S0002-9904-1945-08332-3 DOI: https://doi.org/10.1090/S0002-9904-1945-08332-3
S. B. Stechkin, Ocenka ostatka ryada Tejlora dlya nekotoryh klassov analiticheskih funkcij , Izv. AN SSSR. Ser. mat., 17, № 5, 462 – 472 (1953).
H. C. Chow, Theorems on power series and Fourier series , Proc. London Math. Soc., 1, 206 – 216 (1951), https://doi.org/10.1112/plms/s3-1.1.206 DOI: https://doi.org/10.1112/plms/s3-1.1.206
G.–I. Sunouchi, On the strong summability of power series and Fourier series , Tohoku Math. J., II. Ser., 6, 220 – 225 (1954), https://doi.org/10.2748/tmj/1178245183 DOI: https://doi.org/10.2748/tmj/1178245183
V. Totik, On the strong approximation by the $(C, alpha)$-means of Fourier series. I , Anal. Math., 6, 57 – 85 (1980), https://doi.org/10.1007/BF02297789 DOI: https://doi.org/10.1007/BF02297789
V. P. Zastavnyj, Tochnaya ocenka priblizheniya nekotoryh klassov differenciruemyh funkcij svertochnymi operatorami , Ukr. mat. visn., 7, № 3, 409 – 433 (2010).
F. G. Avkhadiev, K.-J. Wirths, Schwarz – Pick type inequalities , Birkhauser-Verlag, Basel (2008), https://doi.org/10.1007/978-3-0346-0000-2 DOI: https://doi.org/10.1007/978-3-0346-0000-2
G. M. Goluzin, O mazhoracii podchinennyh analiticheskih funkcij. I , Mat. sb., 29 (71), № 1, 209 – 224 (1951).
V. V. Savchuk, M. V. Savchuk, Ocinki sum Fejєra dlya golomorfnih funkcij klasu Bloha , Zb. prac' In–tu matematiki NAN Ukraїni, 7, № 1, 264 – 273 (2010).
W. Rogosinski, G. Szego, Uber die Abschnitte von Potenzreihen, die in einem Kreise beschrankt bleiben , Math. Z., 28, 73 – 94 (1928), https://doi.org/10.1007/BF01181146 DOI: https://doi.org/10.1007/BF01181146
G. V. Milovanović, D. S. Mitrinović, Th. M. Rassias, Topics in polynomials: extremal problems, inequalities, zeros , World Sci. Publ. Co. Inc., Singapore etc. (1994), https://doi.org/10.1142/1284 DOI: https://doi.org/10.1142/1284
Copyright (c) 2022 Віктор Васильович Савчук
This work is licensed under a Creative Commons Attribution 4.0 International License.