Approximation of holomorphic functions by Cesàro means

  • O. G. Rovenska Institute of Mathematics of the National Academy of Sciences of Ukraine, Kiev
  • V. V. Savchuk Institute of Mathematics of the National Academy of Sciences of Ukraine, Kiev
  • M. V. Savchuk National technical University of Ukraine "KPI named after I. Sikorskyi", Kyiv
Keywords: holomorphic function, disk algebra, Cesare averages, Reasz a avs, constructive characteristic

Abstract

UDC 517.5

For the Lipschitz class of functions holomorphic in the disc, we present a constructive characterization of this class in terms of Cesaro’s means of order $\alpha \ge 2$ of the Taylor series. We solve the problem of exact upper bound for the deviations of Cesaro’s means of order $\alpha \ge 2$ as well as for the deviations of Riesz’s means of order 2 of the Taylor series in the class of functions holomorphic in the disc and having a bounded derivative.

 

Author Biography

M. V. Savchuk, National technical University of Ukraine "KPI named after I. Sikorskyi", Kyiv

 

 

References

M. Riesz, Sur la sommation des series de Fourier , Acta Sci. Math., 1, 104 – 113 (1923).

A. Zigmund, Trigonometricheskie ryady: v 2-h t. , t. 1, Mir, Moskva (1965).

E. A. Storozhenko, Priblizhenie funkcij klassa Hp , 0 < p leq 1 , Mat. sb., 105, № 4, 601 – 621 (1978).

A. I. Stepanec, Metody teorii priblizhenij: v 2-h ch., ch. 1 , In-t matematiki NAN Ukrainy, Kiev (2002).

G.-I. Sunouchi, C. Watari, On determination of the class of saturation in the theory of approximation of functions. II , Tohoku Math. J., II. Ser., 11, 480 – 488 (1959), https://doi.org/10.2748/tmj/1178244545 DOI: https://doi.org/10.2748/tmj/1178244545

A. H. Tureckij, O klassah nasyshcheniya v prostranstve $C$ , Izv. AN SSSR. Ser. mat., 25, № 3, 411 – 442 (1961).

H. Berens, On the saturation theorem for the Cesaro means of Fourier series , Acta Math. Acad. Sci. Hung., 21, 95 – 99 (1970), https://doi.org/10.1007/BF02022492 DOI: https://doi.org/10.1007/BF02022492

P. M. Tamrazov, Gladkosti i polinomial'nye priblizheniya , Nauk. dumka, Kiev (1975).

V. V. Savchuk, S. O. CHajchenko, M. V. Savchuk, Nablizhennya obmezhenih golomorfnih i garmonichnih funkcij serednimi Fejєra , Ukr. mat. zhurn., 71, № 4, 516 – 542 (2019).

V. V. Savchuk, Priblizheniya srednimi Fejera funkcij klassa Dirihle , Mat. zametki, 81, № 5, 744 – 750 (2007). DOI: https://doi.org/10.4213/mzm3718

A. Zygmund, On the degree of approximation of functions by Fejer means , Bull. Amer. Math. Soc., 51, 274 – 278 (1945), https://doi.org/10.1090/S0002-9904-1945-08332-3 DOI: https://doi.org/10.1090/S0002-9904-1945-08332-3

S. B. Stechkin, Ocenka ostatka ryada Tejlora dlya nekotoryh klassov analiticheskih funkcij , Izv. AN SSSR. Ser. mat., 17, № 5, 462 – 472 (1953).

H. C. Chow, Theorems on power series and Fourier series , Proc. London Math. Soc., 1, 206 – 216 (1951), https://doi.org/10.1112/plms/s3-1.1.206 DOI: https://doi.org/10.1112/plms/s3-1.1.206

G.–I. Sunouchi, On the strong summability of power series and Fourier series , Tohoku Math. J., II. Ser., 6, 220 – 225 (1954), https://doi.org/10.2748/tmj/1178245183 DOI: https://doi.org/10.2748/tmj/1178245183

V. Totik, On the strong approximation by the $(C, alpha)$-means of Fourier series. I , Anal. Math., 6, 57 – 85 (1980), https://doi.org/10.1007/BF02297789 DOI: https://doi.org/10.1007/BF02297789

V. P. Zastavnyj, Tochnaya ocenka priblizheniya nekotoryh klassov differenciruemyh funkcij svertochnymi operatorami , Ukr. mat. visn., 7, № 3, 409 – 433 (2010).

F. G. Avkhadiev, K.-J. Wirths, Schwarz – Pick type inequalities , Birkhauser-Verlag, Basel (2008), https://doi.org/10.1007/978-3-0346-0000-2 DOI: https://doi.org/10.1007/978-3-0346-0000-2

G. M. Goluzin, O mazhoracii podchinennyh analiticheskih funkcij. I , Mat. sb., 29 (71), № 1, 209 – 224 (1951).

V. V. Savchuk, M. V. Savchuk, Ocinki sum Fejєra dlya golomorfnih funkcij klasu Bloha , Zb. prac' In–tu matematiki NAN Ukraїni, 7, № 1, 264 – 273 (2010).

W. Rogosinski, G. Szego, Uber die Abschnitte von Potenzreihen, die in einem Kreise beschrankt bleiben , Math. Z., 28, 73 – 94 (1928), https://doi.org/10.1007/BF01181146 DOI: https://doi.org/10.1007/BF01181146

G. V. Milovanović, D. S. Mitrinović, Th. M. Rassias, Topics in polynomials: extremal problems, inequalities, zeros , World Sci. Publ. Co. Inc., Singapore etc. (1994), https://doi.org/10.1142/1284 DOI: https://doi.org/10.1142/1284

Published
17.06.2022
How to Cite
Rovenska O. G., Savchuk V. V., and SavchukM. V. “Approximation of Holomorphic Functions by Cesàro Means”. Ukrains’kyi Matematychnyi Zhurnal, Vol. 74, no. 5, June 2022, pp. 676 -84, doi:10.37863/umzh.v74i5.7143.
Section
Research articles