Тhe concept of topological well-ordered space

  • Mustafa Burç Kandemir Department of Mathematics, Faculty of Science, Mugla Sıtkı Koçman University
  • Dilan Başak Uludağ Department of Mathematics, Faculty of Science, Mugla Sıtkı Koçman University
Keywords: Poset, Topology, Well-ordered set, Topological well-ordered space, Graph theory


UDC 515.12

Since the general definition of topology is based on the characteristics of the standard Euclidean topology, the relationships between the ordering on real numbers and its topology have been generalized over time and studied in numerous aspects. The compatibility of partially ordered sets with the topology on them was  studied by many researchers.  On the other hand, well-orderedness is an important concept of the set theory.  We define the concept of topological well-orderedness, which can be regarded as a topological generalization of well-orderedness in the set theory, and analyze its basic properties.  In this way, the relationship between well-orderedness and topology is  established from a different point of view.  Finally, some basic applications of the concept of topological  well-orderedness to the graph theory are investigated.


P. Alexandroff, Diskrete Räume, Mat. Sb (N.S.), 2, 501–518 (1937).

G. Artico, U. Marconi, Selections and topologically well-ordered spaces, Topology and Appl., 115, № 3, 299–303 (2001). DOI: https://doi.org/10.1016/S0166-8641(00)00072-9

G. Birkhoff, Lattice theory, 4th ed., Amer. Math. Soc. Colloq. Publ., USA (1979).

G. Chartrand, P. Zhang, A first course in graph theory, Dover Publ., New York (2012).

J. Dugundji, Topology, Allyn and Bacon Inc., Boston (1966).

S. Eilenberg, Ordered topological spaces, Amer. J. Math., 63, 39–45 (1941). DOI: https://doi.org/10.2307/2371274

R. Engelking, R. W. Heath, E. Michael, Topological well-ordering and selections, Invent. Math., 6, 150–158 (1968). DOI: https://doi.org/10.1007/BF01425452

O. Frink, Topology in lattices, Trans. Amer. Math. Soc., 51, 569–582 (1942). DOI: https://doi.org/10.1090/S0002-9947-1942-0006496-X

V. Gutev, Fell continuous selections and topologically well-orderable spaces II, Proc. Ninth Prague Topological Symp., 2001, Topology Atlas, Toronto (2002), p.~157–163.

V. Gutev, T. Nogura, Fell continuous selections and topologically well-orderable spaces, Matematika, 51, 163–169 (2004). DOI: https://doi.org/10.1112/S002557930001559X

E. Harzheim, Ordered sets, Springer, New York (2005).

J. L. Kelley, General topology, Van Nostrand, Princeton, NJ (1955).

A. Kılıcman, K. Abdulkalek, Topological spaces associated with simple graphs, J. Math. Anal., 9, № 4, 44–52 (2018).

J. R. Munkres, Topology, 2nd ed., Prentice Hall, Inc., Upper Saddle River, NJ (2000).

L. Nachbin, Sur les espaces topologiques ordonn'{e}s, C. R. Acad. Sci. Paris, 226, 381–382 (1948).

L. Nachbin, Topology and order, Chicago (1950).

L. A. Steen, J. A. Seebach (Jr.), Counterexamples in topology, Springer-Verlag, Berlin, New York (1995).

L. E. Ward, Partially ordered topological spaces, Proc. Amer. Math. Soc., 5, 144–161 (1954). DOI: https://doi.org/10.1090/S0002-9939-1954-0063016-5

How to Cite
Kandemir, M. B., and D. B. Uludağ. “Тhe Concept of Topological Well-Ordered Space”. Ukrains’kyi Matematychnyi Zhurnal, Vol. 75, no. 6, June 2023, pp. 817 -29, doi:10.37863/umzh.v75i6.7145.
Research articles