Widths of classes of functions in the weight space $L_{2,\gamma}(\mathbb{R}), \gamma=\exp(-x^2)$
Abstract
UDC 517.5
In the space $L_{2,\gamma}(\mathbb{R})$ approximating characteristics of the optimizing sense have been considered for the classes $W^r_2(\Omega_{m,\gamma}, \varphi,\Psi; \mathbb{R}) := $ $:= \Big\{ f \in L^r_{2,\gamma}(D,\mathbb{R}) : \int\limits_0^t \Omega_{m,\gamma} (D^rf, u) \varphi(u) du \leqslant \Psi(t) \, \forall t \in (0,1) \Big\}$, where $r \in \mathbb{Z}_{+}$; $m \in \mathbb{N}$; $\Omega_{m,\gamma}$ is the generalized $m$th order modulus of continuity; $\varphi$ is a weight function; $\Psi$ is a majorant; $D := - \frac{\displaystyle d^2}{\displaystyle d x^2} +2x \frac{\displaystyle d}{\displaystyle d x}$ is the differential operator, $D^r f = D(D^{r-1} f)$ $(r \in \mathbb{N})$, $D^0 f \equiv f$; $L^0_{2,\gamma}(D,\mathbb{R}) \equiv L_{2,\gamma}(\mathbb{R})$. Lower and upper estimates were found for the different widths of the indicated classes in $L_{2,\gamma}(\mathbb{R})$. The conditions on the majorant have been determined under which realization their exact values succeed to compute. Some concrete exact rezults given.
References
S. Z. Rafal'son, O priblizhenii funkcij v srednem summami Fur'e – Ermita, Izv. vuzov. Matematika, № 7, 78 – 84 (1968).
G. Frojd, Ob approksimacii s vesom algebraicheskimi mnogochlenami na dejstvitel'noj osi, Dokl. AN SSSR, 191, № 2, 293 – 294 (1970).
V. A. Abilov, O poryadke priblizheniya nepreryvnyh funkcij arifmeticheskimi srednimi chastnyh summ ryada Fur'e – Ermita, Izv. vuzov. Matematika, № 3, 3 – 9 (1972).
H. N. Mhaskar, Weighted polynomial approximation, J. Approx. Theory, 46, № 1, 100 – 110 (1986)., https://doi.org/10.1016/0021-9045(86)90089-4 DOI: https://doi.org/10.1016/0021-9045(86)90089-4
V. A. Abilov, F. A. Abilova, Some problems of the approximation of functions by Fourier – Hermite sums in the space $L_2( R^2,e^{-x^2})$, Russian Math., 50, № 1, 1 – 10 (2006).
S. B. Vakarchuk, Mean approximation of functions on the real axis by algebraic polynomials with Chebyhev – Hermite weight and widths of function classes, Math. Notes, 95, № 5-6, 599 – 614 (2014), https://doi.org/10.1134/S0001434614050046 DOI: https://doi.org/10.1134/S0001434614050046
S. B. Vakarchuk, A. V. Shvachko, On the best approximation in the mean by algebraic polynomials with weight and exact values of widths for the classes of functions, Ukr. Math. J., 65, № 12, 1774 – 1792 (2014), https://doi.org/10.1007/s11253-014-0897-8 DOI: https://doi.org/10.1007/s11253-014-0897-8
K. Tuhliev, A. M. Tujchiev, Srednekvadraticheskoe priblizhenie funkcij na vsej osi s vesom CHebysheva – Ermita algebraicheskimi polinomami, Tr. In-ta matematiki i mekhaniki UrO RAN, 26, № 2, 270 – 277 (2020).
V. M. Fedorov, Approximation by algebraic polynomials with Chebyshev – Hermitian weight, Soviet Math., 28, № 6, 70 – 79 (1984).
I. P. Natanson, Teoriya funkcij veshchestvennoj peremennoj, Nauka, Moskva (1974).
L. V. Taikov, Inequalities containing best approximations and the modulus of continuity of functions in $L_{2}$ , Math. Notes, 20, № 3, 797 – 800 (1976). DOI: https://doi.org/10.1007/BF01097254
L. V. Taikov, Best approximations of differentiable functions in the metric of the space $L_{2}$ , Math. Notes, 22, № 4, 789 – 794 (1977). DOI: https://doi.org/10.1007/BF01146425
A. A. Ligun, Some inequalities between best approximations and moduli of continuity in an $L_{2}$ space, Math. Notes, 24, № 6, 917 – 921 (1978). DOI: https://doi.org/10.1007/BF01140019
S. B. Vakarchuk, Jackson-type inequalities and widths of function classes in $L_{2}$, Math. Notes, 80, № 1, 11 – 18 (2006), https://doi.org/10.1007/s11006-006-0102-y DOI: https://doi.org/10.1007/s11006-006-0102-y
M. Sh. Shabozov, G. A. Yusupov, Best polynomial approximations in $L_{2}$ of classes of $2pi$ -periodic functions and exact values of their widths, Math. Notes, 90, № 5, 748 – 757 (2011), https://doi.org/10.1134/S0001434611110125 DOI: https://doi.org/10.1134/S0001434611110125
S. B. Vakarchuk, Jackson-type inequalities with generalized modulus of continuity and exact values of the $n$-widths of the classes of $(psi,beta)$-differentiable functions in $L_{2}$. I, Ukr. Math. J., 68, № 6, 823 – 848 (2016), https://doi.org/10.1007/s11253-016-1260-z DOI: https://doi.org/10.1007/s11253-016-1260-z
S. B. Vakarchuk, Jackson-type inequalities with generalized modulus of continuity and exact values of the $n$-widths of the classes of $(psi,beta)$-differentiable functions in $L_{2}$. II, Ukr. Math. J., 68, № 8, 1165 – 1183 (2017), https://doi.org/10.1007/s11253-017-1285-y DOI: https://doi.org/10.1007/s11253-017-1285-y
Copyright (c) 2022 Сергій Борисович Вакарчук
This work is licensed under a Creative Commons Attribution 4.0 International License.