New quantum Hermite–Hadamard-type inequalities for $p$-convex functions involving recently defined quantum integrals
Abstract
UDC 517.5
We develop new Hermite–Hadamard-type integral inequalities for $p$-convex functions in the context of $q$-calculus by using the concept of recently defined $T_{q}$-integrals. Then thе obtained Hermite–Hadamard inequality for $p$-convex functions is used to get new Hermite–Hadamard inequality for coordinated $p$-convex functions. Furthermore, we present some examples to demonstrate the validity of our main results. We hope that the ideas and techniques of this study may stimulate further research in this field.
References
M. Alomari, M. Darus, S. S. Dragomir, New inequalities of Hermite–Hadamard type for functions whose second derivatives absolute values are quasi-convex, Tamkang J. Math., 41, Article 353 (2010). DOI: https://doi.org/10.5556/j.tkjm.41.2010.498
S. S. Dragomir, C.E.M. Pearce, Selected topics on Hermite–Hadamard inequalities and applications, RGMIA Monographs, Victoria Univ. (2000).
S. S. Dragomir, R. P. Agarwal, Two inequalities for differentiable mappings and applications to special means of real numbers and to trapezoidal formula, Appl. Math Lett., 11, 91–95 (1998). DOI: https://doi.org/10.1016/S0893-9659(98)00086-X
S. S. Dragomir, On some new inequalities of Hermite–Hadamard type for $m$-convex functions, Tamkang J. Math., 33, 55–65 (2002). DOI: https://doi.org/10.5556/j.tkjm.33.2002.304
G. Rahman, K. S. Nisar, S. Rashid, T. Abdeljawad, Certain Gruss type inequalities via tempered fractional integrals concerning another function, J. Inequal. and Appl., 2020, Article 147 (2020). DOI: https://doi.org/10.1186/s13660-020-02420-x
S. Rashid, A. Khalid, G. Rahman, K. S. Nisar, Y.-M. Chu, On new modifications governed by quantum Hahnas integral operator pertaining to fractional calculus, J. Funct. Spaces, 2020, Article 8262860 (2020). DOI: https://doi.org/10.1155/2020/8262860
L. Xu, Y.-M. Chu, S. Rashid, A. A. El-Deeb, K. S. Nisar, On new unified bounds for a family of functions via fractional q-calculus theory, J. Funct. Spaces, 2020, Article 4984612 (2020). DOI: https://doi.org/10.1155/2020/4984612
S. Rashid, Z. Hammouch, R. Ashraf, D. Baleanu, K. S. Nisar, New quantum estimates in the setting of fractional calculus theory, Adv. Difference Equat., 2020, Article 383 (2020). DOI: https://doi.org/10.1186/s13662-020-02843-2
S. Rashid, M. A. Noor, K. S. Nisar, D. Baleanu, G. Rahman, A new dynamic scheme via fractional operators on time scale, Front Phys., 8, (2020). DOI: https://doi.org/10.3389/fphy.2020.00165
S. Rashid, F. Jarad, M. A. Noor, H. Kalsoom, Y.-M. Chu, Inequalities by means of generalized proportional fractional integral operators with respect to another function, Mathematics, 7, Article 1225 (2019). DOI: https://doi.org/10.3390/math7121225
Z. Khan, S. Rashid, R. Ashraf, D. Baleanu, Y.-M. Chu, Generalized trapezium-type inequalities in the settings of fractal sets for functions having generalized convexity property, Adv. Difference Equat., 2020, Article 657 (2020). DOI: https://doi.org/10.1186/s13662-020-03121-x
S.-B. Chen, S. Rashid, Z. Hammouch, M. A. Noor, R. Ashraf, Y.-M. Chu, Integral inequalities via Rainaas fractional integrals operator with respect to a monotone function, Adv. Difference Equat., 2020, Article 647 (2020). DOI: https://doi.org/10.1186/s13662-020-03108-8
S. Rashid, R. Ashraf, K. S. Nisar, T. Abdeljawad, Estimation of integral inequalities using the generalized fractional derivative operator in the Hilfer sense, J. Math., 2020, Article 1626091 (2020). DOI: https://doi.org/10.1155/2020/1626091
A. W. Roberts, D. E. Varberg, Convex functions, Acad. Press, New York (1973).
N. Alp, M. Z. Sarikaya, M. Kunt, İ. İşcan, $q$-Hermite–Hadamard inequalities and quantum estimates for midpoint type inequalities via convex and quasi-convex functions, J. King Saud Univ. Sci., 30, 193–203 (2018). DOI: https://doi.org/10.1016/j.jksus.2016.09.007
K. S. Zhang, J. P. Wan, $p$-Convex functions and their properties, Pure and Appl. Math., 23, 130–133 (2007).
İ. İşcan, Hermite–Hadamard type inequalities for harmonically convex functions, Hacet. J. Math. and Stat., 43, 935–942 (2014). DOI: https://doi.org/10.1155/2014/346305
Z. B. Fang, R. Shi, On the ($p,h$)-convex function and some integral inequalities, J. Inequal. and Appl., 45, Article 45 (2014). DOI: https://doi.org/10.1186/1029-242X-2014-45
W. G. Yang, Hermite–Hadamard type inequalities for $(p_{1},h_{1})$-$(p_{2},h_{2})$-convex functions on the coordinates, Tamkang J. Math., 47, 289–322 (2016). DOI: https://doi.org/10.5556/j.tkjm.47.2016.1958
M. A. Ali, H. Budak, M. Abbas, Y.-M. Chu, Quantum Hermite–Hadamard-type inequalities for functions with convex absolute values of second $q^{b}$-derivatives, Adv. Difference Equat., 2020, Article 7 (2021). DOI: https://doi.org/10.1186/s13662-020-03163-1
M. A. Ali, N. Alp, H. Budak, Y. M. Chu, Z. Zhang, On some new quantum midpoint type inequalities for twice quantum differentiable convex functions, Open Math., 19, 427–439 (2021). DOI: https://doi.org/10.1515/math-2021-0015
N. Alp, M. Z. Sarikaya, Hermite–Hadamard's type
inequalities for coordinated convex functions on quantum integral, Appl. Math. E-Notes, 20, 341–356 (2020).
H. Budak, Some trapezoid and midpoint type inequalities for newly defined quantum integrals, Proyecciones, 40, 199–215 (2021). DOI: https://doi.org/10.22199/issn.0717-6279-2021-01-0013
H. Budak, M. A. Ali, M. Tarhanaci, Some new quantum Hermite–Hadamard-like inequalities for coordinated convex functions, J. Optim. Theory and Appl., 186, 899–910 (2020). DOI: https://doi.org/10.1007/s10957-020-01726-6
J. Tariboon, S. K. Ntouyas, P. Agarwal, New concepts of fractional quantum calculus and applications to impulsive fractional $q$-difference equations, Adv. Difference Equat., 1, 1–19 (2015). DOI: https://doi.org/10.1186/s13662-014-0348-8
M. Vivas-Cortez, M. A. Ali, H. Budak, H. Kalsoom, P. Agarwal, Some new Hermite–Hadamard and related inequalities for convex functions via $(p,q)$-integral, Entropy, 23, № 7, Article 828 (2021). DOI: https://doi.org/10.3390/e23070828
N. Alp, M. Z. Sariakaya, A new definition and properties of quantum integral which calls $q$-integral, Konuralp J. Math., 5, 146–159 (2017).
H. Kara, H. Budak, N. Alp, H. Kalsoom, M. Z. Sarikaya, On new generalized quantum integrals and related Hermite–Hadamard inequalities, J. Inequal. and Appl., 2021, Article 180 (2021). DOI: https://doi.org/10.1186/s13660-021-02715-7
H. Kara, H. Budak, On Hermite–Hadamard type inequalities for newly defined generalized quantum integrals, Ric. Mat. (2021); https://doi.org/10.1007/s11587-021-00662-5. DOI: https://doi.org/10.1007/s11587-021-00662-5
F. H. Jackson, On a $q$-definite integrals, Quart. J. Pure and Appl. Math., 41, 193–203 (1910).
J. Tariboon, S. K. Ntouyas, Quantum calculus on finite intervals and applications to impulsive difference equations, Adv. Difference Equat., 282, 1–19 (2013). DOI: https://doi.org/10.1186/1687-1847-2013-282
S. Bermudo, P. Korus, J. N. Valdes, On $q$-Hermite–Hadamard inequalities for general convex functions, Acta Math. Hungar., 162, 364–374 (2020). DOI: https://doi.org/10.1007/s10474-020-01025-6
M. A. Latif, S. S. Dragomir, E. Momoniat, Some $q$-analogues of Hermite–Hadamard inequality of functions of two variables on finite rectangles in the plane, J. King Saud Univ. Sci., 29, 263–273 (2017). DOI: https://doi.org/10.1016/j.jksus.2016.07.001
Copyright (c) 2023 Hüseyin Budak
This work is licensed under a Creative Commons Attribution 4.0 International License.