Weighted discrete Hardy's inequalities

Authors

  • Pascal Lefèvre University of Artois, Laboratoire de Mathématiques de Lens (LML), Lens, France

DOI:

https://doi.org/10.37863/umzh.v75i7.7201

Keywords:

Hardy's inequality, Cesàro mean, weight.

Abstract

UDC 517.5

We give a short proof of a weighted version of the discrete Hardy inequality. This includes the known case of classical monomial weights with optimal constant. The proof is based on the ideas of the short direct proof given recently in [P. Lefèvre, Arch. Math. (Basel), 114, № 2, 195–198 (2020)].

References

G. Bennett, Some elementary inequalities, Quart. J. Math. Oxford, 38, 401–425 (1987).

G. Curbera, W. Ricker, Spectrum of the Cesáro operator in $l^p$, Arch. Math. (Basel), 100, № 3, 267–271 (2013).

H. Hardy, J. E. Littlewood, G. Pólya, Inequalities, 2nd ed., Cambridge Univ. Press, Cambridge (1967).

Y. C. Huang, Change of variable and discrete hardy inequality, preprint.

G. J. O. Jameson, R. Lashkaripour, Norms of certain operators on weighted $l^p$ spaces and Lorentz sequence spaces, J. Inequal. Pure and Appl. Math., 3, Issue 1 (2002).

F. Fischer, M. Keller, F. Pogorzelski, An improved discrete $p$-Hardy inequality}; ArXiv: 1910.03004.

A. Kufner, L. Maligranda, L. E. Persson, The prehistory of the Hardy inequality, Amer. Math. Monthly, 113, 715–732 (2006).

P. Lefèvre, A short direct proof of the discrete Hardy inequality, Arch. Math. (Basel), 114, № 2, 195–198 (2020).

P. Lefèvre, Weighted discrete Hardy's inequalities (unpublished)}; https://hal.archives-ouvertes.fr/hal-02528265.

Downloads

Published

25.07.2023

Issue

Section

Short communications

How to Cite

Lefèvre, Pascal. “Weighted Discrete Hardy’s Inequalities”. Ukrains’kyi Matematychnyi Zhurnal, vol. 75, no. 7, July 2023, pp. 1009-12, https://doi.org/10.37863/umzh.v75i7.7201.