Inequalities of the Edmundson-Lah-Ribarč type for n-convex functions with applications

  • R. Mikić Univ. Zagreb, Croatia
  • D. Pečarić Catholic Univ. Croatia, Zagreb, Croatia
  • J. Pečarić RUDN Univ., Moscow, Russia
Keywords: Jensen inequality, Edmundson-Lah-Ribarič inequality, n-convex functions, divided differences, f-divergence, Zipf-Mandelbrot law

Abstract

UDC 517.5

We derive some Edmundson – Lah – Ribarič type inequalities for positive linear functionals and $n$-convex functions. Main results are applied to the generalized $f$ -divergence functional. Examples with Zipf – Mandelbrot law are used to illustrate the results.

References

S. Abramovich, Quasi-arithmetic means and subquadracity, J. Math. Inequal., 9, № 4, 1157 – 1168 (2015), https://doi.org/10.7153/jmi-09-88 DOI: https://doi.org/10.7153/jmi-09-88

R. P. Agarwal, P. J. Y. Wong, Error inequalities in polynomial interpolation and their applications, Kluwer Acad. Publ., Dordrecht etc. (1993), https://doi.org/10.1007/978-94-011-2026-5 DOI: https://doi.org/10.1007/978-94-011-2026-5

P. R. Beesack, J. E. Pečarić, On the Jessen’s inequality for convex functions, J. Math. Anal., 110, 536 – 552 (1985), https://doi.org/10.1016/0022-247X(85)90315-4 DOI: https://doi.org/10.1016/0022-247X(85)90315-4

M. Ben Bassat, $f$-Entropies, probability of error, and feature selection, Inform. and Control, 39, 227 – 242 (1978), https://doi.org/10.1016/S0019-9958(78)90587-9 DOI: https://doi.org/10.1016/S0019-9958(78)90587-9

P. S. Bullen, D. S. Mitrinović, P. M. Vasić, Means and their inequalities, D. Reidel Publ. Co., Dordrecht etc. (1987), https://doi.org/10.1007/978-94-017-2226-1 DOI: https://doi.org/10.1007/978-94-017-2226-1

C. H. Chen, Statistical pattern recognition, Hayden Book Co., Rochelle Park, NJ (1973).

D. Choi, M. Krnić, J. Pečarić, Improved Jensen-type inequalities via linear interpolation and applications, J. Math. Inequal., 11, № 2, 301 – 322 (2017), https://doi.org/10.7153/jmi-11-27 DOI: https://doi.org/10.7153/jmi-11-27

C. K. Chow, C. N. Liu, Approximating discrete probability distributions with dependence trees, IEEE Trans. Inform. Theory, 14, № 3, 462 – 467 (1968), https://doi.org/10.1109/tit.1969.1054336 DOI: https://doi.org/10.1109/TIT.1969.1054336

I. Csiszár, Information measures: A critical survey, Trans. 7th Prague Conf. Inform. Theory, Statist. Decis. Funct., Random Processes and 8th Eur. Meeting Statist., Vol. B, Academia Prague, 73 – 86 (1978).

I. Csiszár, Information-type measures of difference of probability functions and indirect observations, Studia Sci. Math. Hungar., 2, 299 – 318 (1967).

L. Egghe, R. Rousseau, Introduction to informetrics. Quantitative methods in library, documentation and information science, Elsevier Sci. Publ., New York (1990).

L. Fry Richardson, Statistics of deadly quarrels, Marcel Dekker, New York (1960).

D. V. Gokhale, S. Kullback, Information in contingency tables, Pacific Grove, Boxwood Press (1978).

E. Issacson, H. B. Keller, Analysis of numerical methods, Dover Publ. Inc., New York (1966).

J. Jakšetić, J. Pečarić, Exponential convexity method, J. Convex Anal., 20, № 1, 181 – 197 (2013).

R. Jakšetić, J. Pečarić, Levinson’s type generalization of the Edmundson – Lah – Ribaric inequality, Mediterr. J. Math., 13, № 1, 483 – 496 (2016), https://doi.org/10.1007/s00009-014-0478-y DOI: https://doi.org/10.1007/s00009-014-0478-y

B. Jessen, Bemaerkinger om konvekse Funktioner og Uligheder imellem Middelvaerdier I, Mat. Tidsskrift B, 17 – 28 (1931).

T. Kailath, The divergence and Bhattacharyya distance measures in signal selection, IEEE Trans. Commun. Technol., 15, № 1, 52 – 60 (1967).

M. Krnić, R. Mikić, J. Pečarić, Strengthened converses of the Jensen and Edmundson – Lah – Ribaric inequalities , Adv. Oper. Theory, 1, № 1, 104 – 122 (2016), https://doi.org/10.22034/aot.1610.1040

K. Krulić Himmelreich, J. Pečarić, D. Pokaz, ´ Inequalities of Hardy and Jensen / New Hardy type inequalities with general kernels, Monogr. Inequal., 6, Element, Zagreb (2013).

J. Liang, G. Shi, Comparison of differences among power means $ Q_ {r, alpha} (a, b, { bf x}) s $, J. Math. Inequal., 9, № 2, 351 – 360 (2015), https://doi.org/10.7153/jmi-09-29 DOI: https://doi.org/10.7153/jmi-09-29

J. Lin, S. K. M. Wong, Approximation of discrete probability distributions based on a new divergence measure, Congr. Numer., 61, 75 – 80 (1988).

B. Manaris, D. Vaughan, C. S. Wagner, J. Romero, R. B. Davis, Evolutionary music and the Zipf – Mandelbrot law: developing fitness functions for pleasant music, Proc. 1st European Workshop on Evolutionary Music and Art (EvoMUSART2003), 522 – 534 (2003).

R. Mikić,´ D. Pečarić, J. Pečarić, Inequalities of the Jensen and Edmundson – Lah – Ribaric type for 3-convex functions with applications, J. Math. Inequal., 12, № 3, 677 – 692 (2018), https://doi.org/10.7153/jmi-2018-12-52

R. Mikić,´ D. Pečarić, J. Pečarić, Some inequalities of the Edmundson – Lah – Ribaric type for 3-convex functions with applications, J. Math. Inequal., 12 (2018), no. 3, 677--692, https://doi.org/10.7153/jmi-2018-12-52 DOI: https://doi.org/10.7153/jmi-2018-12-52

D. Mouillot, A. Lepretre, Introduction of relative abundance distribution (RAD) indices, estimated from the rankfrequency diagrams (RFD), to assess changes in community diversity, Envir. Monitoring and Assessment, 63, № 2, 279 – 295 (2000). DOI: https://doi.org/10.1023/A:1006297211561

Z. Pavić, The Jensen and Hermite – Hadamard inequality on the triangle, J. Math. Inequal., 11, № 4, 1099 – 1112 (2017), https://doi.org/10.7153/jmi-2017-11-82 DOI: https://doi.org/10.7153/jmi-2017-11-82

J. Pečarić, I. Perić, G. Roquia, Exponentially convex functions generated by Wulbert’s inequality and Stolarsky-type means, Math. and Comput. Model., 55, 1849 – 1857 (2012), https://doi.org/10.1016/j.mcm.2011.11.032 DOI: https://doi.org/10.1016/j.mcm.2011.11.032

J. Pečarić, I. Perić, New improvement of the converse Jensen inequality>, Math. Inequal. Appl., 21, № 1, 217 – 234 (2018), https://doi.org/10.7153/mia-2018-21-17 DOI: https://doi.org/10.7153/mia-2018-21-17

J. E. Pečarić, F. Proschan, Y. L. Tong, Convex functions, partial orderings and statistical applications, Acad. Press Inc., San Diego (1992).

M. Sababheh, Improved Jensen’s inequaliy, Math. Inequal. Appl., 20, № 2, 389 – 403 (2017), https://doi.org/10.7153/mia-20-27 DOI: https://doi.org/10.7153/mia-20-27

Z. K. Silagadze, Citations and the Zip – Mandelbrot Law>, Complex Systems, № 11, 487 – 499 (1997).

G. K. Zipf, The psychobiology of language, Houghton-Mifflin, Cambridge (1935).

G. K. Zipf, Human behavior and the principle of least effort, Reading, Addison-Wesley (1949).

Published
22.01.2021
How to Cite
Mikić , R., D. Pečarić, and J. Pečarić. “Inequalities of the Edmundson-Lah-Ribarč Type for N-Convex Functions With Applications”. Ukrains’kyi Matematychnyi Zhurnal, Vol. 73, no. 1, Jan. 2021, pp. 89 - 106, doi:10.37863/umzh.v73i1.721.
Section
Research articles