Stochastic Bernoulli equation on the algebra of generalized functions

  • Hafedh Rguigui Department of Mathematics, AL-Qunfudhah University College, Umm Al-Qura University, KSA, High School of Sciences and Technology of Hammam Sousse, University of Sousse, Hammam Sousse, Tunisia
Keywords: Wick product; Generalized stochastic Bernoulli Wick differential equation; Space of entire functions with $\theta$-exponential growth condition of minimal type.

Abstract

UDC 519.21

Based on the topological dual space $\mathcal{F}_\theta^*(\mathcal{S'}_{\mathbb{C}})$ of the space of entire functions  with $\theta$-exponential growth of finite type, we introduce the generalized stochastic Bernoulli–Wick differential equation (or the stochastic Bernoulli equation on the algebra of generalized functions) by using the Wick product of elements in $\mathcal{F}_\theta^*(\mathcal{S'}_{\mathbb{C}})$. This equation is an infinite-dimensional stochastic distributions analog of  the classical  Bernoulli differential equation. This stochastic differential equation is solved  and exemplified by several examples.

References

S. H. Altoum, A. Ettaieb, H. Rguigui, Generalized Bernoulli–Wick differential equation, Infin. Dimens. Anal. Quantum Probab. and Relat. Top., 24, Issue 01, Article 2150008 (2021). DOI: https://doi.org/10.1142/S0219025721500089

M. Ben Chrouda, M. El Oued, H. Ouerdiane, Convolution calculus and application to stochastic differential equation, Soochow J. Math., 28, 375–388 (2002).

F. Cipriano, H. Ouerdiane, J. L. Silva, R. Vilela Mendes, A nonlinear stochastic equation of convolution type: solution and stochastic representation, Global J. Pure and Appl. Math., 4, № 1 (2008). DOI: https://doi.org/10.1142/9789812770547_0006

R. Gannoun, R. Hachaichi, P. Krée, H. Ouerdiane, Division de fonctions holomorphes a croissance $theta$-exponentielle, Technical Report E 00-01-04, BiBoS Univ. Bielefeld (2000).

R. Gannoun, R. Hachaichi, H. Ouerdiane, A. Rezgi, Un théorème de dualité entre espace de fonction holomorphes à croissance exponentielle, J. Funct. Anal., 171, 1–14 (2000). DOI: https://doi.org/10.1006/jfan.1999.3518

T. Hida, N. Ikeda, Analysis on Hilbert space with reproducing kernels arising from multiple Wiener integrals, Proc. Fifth Berkeley Symp. Math. Stat. Prob., 2, part 1, 117–143 (1965).

H.-H. Kuo, White noise distribution theory, CRC Press, Boca Raton (1996).

N. Obata, White noise calculus and Fock spaces, Lect. Notes Math., 1577, Springer-Verlag (1994). DOI: https://doi.org/10.1007/BFb0073952

N. Obata, H. Ouerdiane, A note on convolution operators in white noise calculus, Infin. Dimens. Anal. Quantum Probab. and Relat. Top., 14, 661–674 (2011). DOI: https://doi.org/10.1142/S0219025711004535

H. Rguigui, Quantum λ-potentials associated to quantum Ornstein–Uhlenbeck semigroups, Chaos, Solitons & Fractals, 73, 80–89 (2015). DOI: https://doi.org/10.1016/j.chaos.2015.01.001

H. Rguigui, Characterization of the QWN-conservation operator, Chaos, Solitons & Fractals, 84, 41–48 (2016). DOI: https://doi.org/10.1016/j.chaos.2015.12.023

H. Rguigui, Characterization theorems for the quantum white noise gross Laplacian and applications, Complex Anal. and Oper. Theory, 12, 1637–1656 (2018). DOI: https://doi.org/10.1007/s11785-018-0773-x

Published
30.08.2023
How to Cite
RguiguiH. “Stochastic Bernoulli Equation on the Algebra of Generalized Functions”. Ukrains’kyi Matematychnyi Zhurnal, Vol. 75, no. 8, Aug. 2023, pp. 1085 -95, doi:10.3842/umzh.v75i8.7223.
Section
Research articles